Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species.

Abstract:

:Electron microscopy (EM) remains the primary method for imaging cellular and tissue ultrastructure, although simultaneous localization of multiple specific molecules continues to be a challenge for EM. We present a method for obtaining multicolor EM views of multiple subcellular components. The method uses sequential, localized deposition of different lanthanides by photosensitizers, small-molecule probes, or peroxidases. Detailed view of biological structures is created by overlaying conventional electron micrographs with pseudocolor lanthanide elemental maps derived from distinctive electron energy-loss spectra of each lanthanide deposit via energy-filtered transmission electron microscopy. This results in multicolor EM images analogous to multicolor fluorescence but with the benefit of the full spatial resolution of EM. We illustrate the power of this methodology by visualizing hippocampal astrocytes to show that processes from two astrocytes can share a single synapse. We also show that polyarginine-based cell-penetrating peptides enter the cell via endocytosis, and that newly synthesized PKMζ in cultured neurons preferentially localize to the postsynaptic membrane.

journal_name

Cell Chem Biol

journal_title

Cell chemical biology

authors

Adams SR,Mackey MR,Ramachandra R,Palida Lemieux SF,Steinbach P,Bushong EA,Butko MT,Giepmans BNG,Ellisman MH,Tsien RY

doi

10.1016/j.chembiol.2016.10.006

subject

Has Abstract

pub_date

2016-11-17 00:00:00

pages

1417-1427

issue

11

eissn

2451-9456

issn

2451-9448

pii

S2451-9456(16)30357-9

journal_volume

23

pub_type

杂志文章
  • Small-Molecule TLR8 Antagonists via Structure-Based Rational Design.

    abstract::Rational design of drug-like small-molecule ligands based on structural information of proteins remains a significant challenge in chemical biology. In particular, designs targeting protein-protein interfaces have met little success given the dynamic nature of the protein surfaces. Herein, we utilized the structure of...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.07.004

    authors: Hu Z,Tanji H,Jiang S,Zhang S,Koo K,Chan J,Sakaniwa K,Ohto U,Candia A,Shimizu T,Yin H

    更新日期:2018-10-18 00:00:00

  • Discovery of a Small Molecule Promoting Mouse and Human Osteoblast Differentiation via Activation of p38 MAPK-β.

    abstract::Disorders of bone healing and remodeling are indications with an unmet need for effective pharmacological modulators. We used a high-throughput screen to identify activators of the bone marker alkaline phosphatase (ALP), and discovered 6,8-dimethyl-3-(4-phenyl-1H-imidazol-5-yl)quinolin-2(1H)-one (DIPQUO). DIPQUO marke...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.03.009

    authors: Cook B,Rafiq R,Lee H,Banks KM,El-Debs M,Chiaravalli J,Glickman JF,Das BC,Chen S,Evans T

    更新日期:2019-07-18 00:00:00

  • Chemical Inhibition of Pre-mRNA Splicing in Living Saccharomyces cerevisiae.

    abstract::The spliceosome mediates precursor mRNA splicing in eukaryotes, including the model organism Saccharomyces cerevisiae (yeast). Despite decades of study, no chemical inhibitors of yeast splicing in vivo are available. We have developed a system to efficiently inhibit splicing and block proliferation in living yeast cel...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.11.008

    authors: Hansen SR,Nikolai BJ,Spreacker PJ,Carrocci TJ,Hoskins AA

    更新日期:2019-03-21 00:00:00

  • Plasmodium PK9 Inhibitors Promote Growth of Liver-Stage Parasites.

    abstract::There is a scarcity of pharmacological tools to interrogate protein kinase function in Plasmodium parasites, the causative agent of malaria. Among Plasmodium's protein kinases, those characterized as atypical represent attractive drug targets as they lack sequence similarity to human proteins. Here, we describe takini...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.11.003

    authors: Raphemot R,Eubanks AL,Toro-Moreno M,Geiger RA,Hughes PF,Lu KY,Haystead TAJ,Derbyshire ER

    更新日期:2019-03-21 00:00:00

  • Small-Molecule-Targeting Hairpin Loop of hTERT Promoter G-Quadruplex Induces Cancer Cell Death.

    abstract::Increased telomerase activity is associated with malignancy and poor prognosis in human cancer, but the development of targeted agents has not yet provided clinical benefit. Here we report that, instead of targeting the telomerase enzyme directly, small molecules that bind to the G-hairpin of the hTERT G-quadruplex-fo...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.04.009

    authors: Song JH,Kang HJ,Luevano LA,Gokhale V,Wu K,Pandey R,Sherry Chow HH,Hurley LH,Kraft AS

    更新日期:2019-08-15 00:00:00

  • A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton.

    abstract::Optically controlled chemical reagents, termed "photopharmaceuticals," are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.11.007

    authors: Gao L,Meiring JCM,Kraus Y,Wranik M,Weinert T,Pritzl SD,Bingham R,Ntouliou E,Jansen KI,Olieric N,Standfuss J,Kapitein LC,Lohmüller T,Ahlfeld J,Akhmanova A,Steinmetz MO,Thorn-Seshold O

    更新日期:2020-11-27 00:00:00

  • Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/p97 ATPase.

    abstract::Interferon-induced transmembrane protein 3 (IFITM3) is a key interferon effector that broadly prevents infection by diverse viruses. However, the cellular factors that control IFITM3 homeostasis and antiviral activity have not been fully elucidated. Using site-specific photo-crosslinking and quantitative proteomic ana...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.03.004

    authors: Wu X,Spence JS,Das T,Yuan X,Chen C,Zhang Y,Li Y,Sun Y,Chandran K,Hang HC,Peng T

    更新日期:2020-05-21 00:00:00

  • Investigation of Penicillin Binding Protein (PBP)-like Peptide Cyclase and Hydrolase in Surugamide Non-ribosomal Peptide Biosynthesis.

    abstract::Non-ribosomal peptides (NRPs) are biosynthesized on non-ribosomal peptides synthetase (NRPS) complexes, of which a C-terminal releasing domain commonly offloads the products. Interestingly, a dedicated releasing domain is absent in surugamides (SGM) NRPS, which directs the biosynthesis of cyclic octapeptides, SGM-A to...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.02.010

    authors: Zhou Y,Lin X,Xu C,Shen Y,Wang SP,Liao H,Li L,Deng H,Lin HW

    更新日期:2019-05-16 00:00:00

  • Hypomorph Mutation-Directed Small-Molecule Protein-Protein Interaction Inducers to Restore Mutant SMAD4-Suppressed TGF-β Signaling.

    abstract::Tumor suppressor genes represent a major class of oncogenic drivers. However, direct targeting of loss-of-function tumor suppressors remains challenging. To address this gap, we explored a variant-directed chemical biology approach to reverse the lost function of tumor suppressors using SMAD4 as an example. SMAD4, a c...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.11.010

    authors: Tang C,Mo X,Niu Q,Wahafu A,Yang X,Qui M,Ivanov AA,Du Y,Fu H

    更新日期:2020-12-04 00:00:00

  • Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways.

    abstract::Identification and validation of the targets of bioactive small molecules identified in cell-based screening is challenging and often meets with failure, calling for the development of new methodology. We demonstrate that a combination of chemical proteomics with in silico target prediction employing the SPiDER method...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.05.016

    authors: Brand S,Roy S,Schröder P,Rathmer B,Roos J,Kapoor S,Patil S,Pommerenke C,Maier T,Janning P,Eberth S,Steinhilber D,Schade D,Schneider G,Kumar K,Ziegler S,Waldmann H

    更新日期:2018-09-20 00:00:00

  • Decoding Transcriptome Dynamics of Genome-Encoded Polyadenylation and Autoregulation with Small-Molecule Modulators of Alternative Polyadenylation.

    abstract::Alternative polyadenylation (APA) plays a critical role in regulating gene expression. However, the balance between genome-encoded APA processing and autoregulation by APA modulating RNA binding protein (RBP) factors is not well understood. We discovered two potent small-molecule modulators of APA (T4 and T5) that pro...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.09.006

    authors: Araki S,Nakayama Y,Sano O,Nakao S,Shimizu-Ogasawara M,Toyoshiba H,Nakanishi A,Aparicio S

    更新日期:2018-12-20 00:00:00

  • A BAF'ling Approach to Curing HIV.

    abstract::Latency is the primary barrier to the development of a long-sought cure for HIV-1. In this issue of Cell Chemical Biology, Marian et al., (2018) describe the development of novel compounds targeting the BAF chromatin remodeling complex to reverse HIV latency, with the potential to provide a functional cure. ...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.12.007

    authors: Tomar S,Ali I,Ott M

    更新日期:2018-12-20 00:00:00

  • Privileged Electrophile Sensors: A Resource for Covalent Drug Development.

    abstract::This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2017.05.023

    authors: Long MJC,Aye Y

    更新日期:2017-07-20 00:00:00

  • Chemoproteomic Profiling of a Pharmacophore-Focused Chemical Library.

    abstract::Pharmacophore-focused chemical libraries are continuously being created in drug discovery programs, yet screening assays to maximize the usage of such libraries are not fully explored. Here, we report a chemical proteomics approach to reutilizing a focused chemical library of 1,800 indole-containing molecules for disc...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.04.007

    authors: Punzalan LL,Jiang L,Mao D,Mahapatra AD,Sato S,Takemoto Y,Tsujimura M,Kusamori K,Nishikawa M,Zhou L,Uesugi M

    更新日期:2020-06-18 00:00:00

  • Unique Binding Specificities of Proteins toward Isomeric Asparagine-Linked Glycans.

    abstract::The glycan ligands recognized by Siglecs, influenza viruses, and galectins, as well as many plant lectins, are not well defined. To explore their binding to asparagine (Asn)-linked N-glycans, we synthesized a library of isomeric multiantennary N-glycans that vary in terminal non-reducing sialic acid, galactose, and N-...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.01.002

    authors: Gao C,Hanes MS,Byrd-Leotis LA,Wei M,Jia N,Kardish RJ,McKitrick TR,Steinhauer DA,Cummings RD

    更新日期:2019-04-18 00:00:00

  • Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A.

    abstract::Interfacial inhibitors exert their biological effects through co-association with two macromolecules. The pateamine A (PatA) class of molecules function by stabilizing eukaryotic initiation factor (eIF) 4A RNA helicase onto RNA, resulting in translation initiation inhibition. Here, we present the crystal structure of ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.12.006

    authors: Naineni SK,Liang J,Hull K,Cencic R,Zhu M,Northcote P,Teesdale-Spittle P,Romo D,Nagar B,Pelletier J

    更新日期:2021-01-05 00:00:00

  • Role of Thiol Reactivity for Targeting Mutant p53.

    abstract::Reactivation of mutant p53 has emerged as a promising approach for cancer therapy. Recent studies have identified several mutant p53-reactivating compounds that target thiol groups in mutant p53. Here we have investigated the relationship between thiol reactivity, p53 thermostabilization, mutant p53 refolding, mutant ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.06.013

    authors: Zhang Q,Bergman J,Wiman KG,Bykov VJN

    更新日期:2018-10-18 00:00:00

  • Selective Inhibition of BFL1: It's All about Finding the Right Partner.

    abstract::In this issue of Cell Chemical Biology, Harvey et al. (2020) identify 4E14, a sulfhydryl-containing N-acetyltryptophan analog that selectively disrupts binding to the previously undruggable anti-apoptotic BCL2 paralog BFL1, and elucidate a BFL1 conformational change that facilitates 4E14 interaction. These results pro...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2020.05.014

    authors: Dai H,Meng XW,Kaufmann SH

    更新日期:2020-06-18 00:00:00

  • Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets.

    abstract::Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown. Using an unbiased, mass spectrometry-based chemical proteomics approach, we genera...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.10.011

    authors: Knezevic CE,Wright G,Rix LLR,Kim W,Kuenzi BM,Luo Y,Watters JM,Koomen JM,Haura EB,Monteiro AN,Radu C,Lawrence HR,Rix U

    更新日期:2016-12-22 00:00:00

  • A Systems Chemoproteomic Analysis of Acyl-CoA/Protein Interaction Networks.

    abstract::Acyl-coenzyme A (CoA)/protein interactions are essential for life. Despite this importance, their global scope and selectivity remains undefined. Here, we describe CATNIP (CoA/AcetylTraNsferase Interaction Profiling), a chemoproteomic platform for the high-throughput analysis of acyl-CoA/protein interactions in endoge...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.11.011

    authors: Levy MJ,Montgomery DC,Sardiu ME,Montano JL,Bergholtz SE,Nance KD,Thorpe AL,Fox SD,Lin Q,Andresson T,Florens L,Washburn MP,Meier JL

    更新日期:2020-03-19 00:00:00

  • A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application.

    abstract::The Precision Medicine Initiative aims to use advances in basic and clinical research to develop therapeutics that selectively target and kill cancer cells. Under the same doctrine of precision medicine, there is an equally important need to visualize these diseased cells to enable diagnosis, facilitate surgical resec...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2015.12.003

    authors: Garland M,Yim JJ,Bogyo M

    更新日期:2016-01-21 00:00:00

  • MRSA Isolates from United States Hospitals Carry dfrG and dfrK Resistance Genes and Succumb to Propargyl-Linked Antifolates.

    abstract::Antibiotic resistance is a rapidly evolving health concern that requires a sustained effort to understand mechanisms of resistance and to develop new agents that overcome those mechanisms. The dihydrofolate reductase (DHFR) inhibitor, trimethoprim (TMP), remains one of the most important orally administered antibiotic...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2016.11.007

    authors: Reeve SM,Scocchera EW,G-Dayanadan N,Keshipeddy S,Krucinska J,Hajian B,Ferreira J,Nailor M,Aeschlimann J,Wright DL,Anderson AC

    更新日期:2016-12-22 00:00:00

  • More than One Way to Skin a Catalyst.

    abstract::In this issue of Cell Chemical Biology, Diaz et al. (2017) report a strategy to achieve temporal, spatial, and stoichiometric control over the protein kinase cAbl in living cells. They achieve this by splitting cAbl into two inactive fragments that form an active kinase upon small molecule addition, potentially provid...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.10.004

    authors: Michnick SW

    更新日期:2017-10-19 00:00:00

  • A MALDI-TOF Approach to Ubiquitin Ligase Activity.

    abstract::In this issue of Cell Chemical Biology,De Cesare et al. (2018) report the development of a high-throughput assay that measures E2/E3 enzyme activity by MALDI-TOF mass spectrometry and apply this to screen for small molecule E3 inhibitors. This assay potentially accelerates the drug discovery for the ubiquitin ligation...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2018.09.002

    authors: van Tol BDM,Geurink PP,Ovaa H

    更新日期:2018-09-20 00:00:00

  • A Ratiometric Sensor for Imaging Insulin Secretion in Single β Cells.

    abstract::Despite the urgent need for assays to visualize insulin secretion there is to date no reliable method available for measuring insulin release from single cells. To address this need, we developed a genetically encoded reporter termed RINS1 based on proinsulin superfolder GFP (sfGFP) and mCherry fusions for monitoring ...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.03.001

    authors: Schifferer M,Yushchenko DA,Stein F,Bolbat A,Schultz C

    更新日期:2017-04-20 00:00:00

  • How to Increase Brightness of Near-Infrared Fluorescent Proteins in Mammalian Cells.

    abstract::Numerous near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial photoreceptors but lack of their systematic comparison makes researcher's choice rather difficult. Here we evaluated side-by-side several modern NIR FPs, such as blue-shifted smURFP and miRFP670, and red-shifted mIFP and mi...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2017.05.018

    authors: Shemetov AA,Oliinyk OS,Verkhusha VV

    更新日期:2017-06-22 00:00:00

  • A Split-Luciferase-Based Trimer Formation Assay as a High-throughput Screening Platform for Therapeutics in Alport Syndrome.

    abstract::Alport syndrome is a hereditary glomerular disease caused by mutation in type IV collagen α3-α5 chains (α3-α5(IV)), which disrupts trimerization, leading to glomerular basement membrane degeneration. Correcting the trimerization of α3/α4/α5 chain is a feasible therapeutic approach, but is hindered by lack of informati...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2018.02.003

    authors: Omachi K,Kamura M,Teramoto K,Kojima H,Yokota T,Kaseda S,Kuwazuru J,Fukuda R,Koyama K,Matsuyama S,Motomura K,Shuto T,Suico MA,Kai H

    更新日期:2018-05-17 00:00:00

  • Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator.

    abstract::Genetically encoded biosensors are useful tools for detecting the presence and levels of diverse biomolecules in living cells. However, low-abundance targets are difficult to detect because they are often unable to bind and activate enough biosensors to detect using standard microscopic imaging approaches. Here we des...

    journal_title:Cell chemical biology

    pub_type: 杂志文章

    doi:10.1016/j.chembiol.2019.01.005

    authors: You M,Litke JL,Wu R,Jaffrey SR

    更新日期:2019-04-18 00:00:00

  • The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery.

    abstract::Recent advances in induced pluripotent stem cell technologies and phenotypic screening shape the future of bioactive small-molecule discovery. In this review we analyze the impact of small-molecule phenotypic screens on drug discovery as well as on the investigation of human development and disease biology. We further...

    journal_title:Cell chemical biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.chembiol.2019.05.007

    authors: Friese A,Ursu A,Hochheimer A,Schöler HR,Waldmann H,Bruder JM

    更新日期:2019-08-15 00:00:00

  • Ubiquinone Biosynthetic Complexes in Prokaryotes and Eukaryotes.

    abstract::Ubiquinone (UQ) is a conserved polyprenylated lipid essential to cellular respiration. Two papers, one in this issue of Cell Chemical Biology (Hajj Chehade et al., 2019) and another in Molecular Cell (Lohman et al., 2019), identify lipid-binding proteins that play crucial roles in chaperoning UQ-intermediates. ...

    journal_title:Cell chemical biology

    pub_type: 评论,杂志文章

    doi:10.1016/j.chembiol.2019.04.005

    authors: Tsui HS,Clarke CF

    更新日期:2019-04-18 00:00:00