Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience.

Abstract:

:Neuron modeling may be said to have originated with the Hodgkin and Huxley action potential model in 1952 and Rall's models of integrative activity of dendrites in 1964. Over the ensuing decades, these approaches have led to a massive development of increasingly accurate and complex data-based models of neurons and neuronal circuits. ModelDB was founded in 1996 to support this new field and enhance the scientific credibility and utility of computational neuroscience models by providing a convenient venue for sharing them. It has grown to include over 1100 published models covering more than 130 research topics. It is actively curated and developed to help researchers discover and understand models of interest. ModelDB also provides mechanisms to assist running models both locally and remotely, and has a graphical tool that enables users to explore the anatomical and biophysical properties that are represented in a model. Each of its capabilities is undergoing continued refinement and improvement in response to user experience. Large research groups (Allen Brain Institute, EU Human Brain Project, etc.) are emerging that collect data across multiple scales and integrate that data into many complex models, presenting new challenges of scale. We end by predicting a future for neuroscience increasingly fueled by new technology and high performance computation, and increasingly in need of comprehensive user-friendly databases such as ModelDB to provide the means to integrate the data for deeper insights into brain function in health and disease.

journal_name

J Comput Neurosci

authors

McDougal RA,Morse TM,Carnevale T,Marenco L,Wang R,Migliore M,Miller PL,Shepherd GM,Hines ML

doi

10.1007/s10827-016-0623-7

subject

Has Abstract

pub_date

2017-02-01 00:00:00

pages

1-10

issue

1

eissn

0929-5313

issn

1573-6873

pii

10.1007/s10827-016-0623-7

journal_volume

42

pub_type

杂志文章,评审
  • Visual responses of crayfish ocular motoneurons: an information theoretical analysis.

    abstract::Motoneuron responses were elicited by global visual motion and stepwise displacements of an illuminated stripe. Stimulus protocols were identical to those used in previous behavioral studies of compensatory eyestalk reflexes. The firing rates and directional selectivity of the motoneuron responses were measured with r...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1025873027017

    authors: Miller CS,Johnson DH,Schroeter JP,Myint L,Glantz RM

    更新日期:2003-09-01 00:00:00

  • State-dependent effects of Na channel noise on neuronal burst generation.

    abstract::We explore the effects of stochastic sodium (Na) channel activation on the variability and dynamics of spiking and bursting in a model neuron. The complete model segregates Hodgin-Huxley-type currents into two compartments, and undergoes applied current-dependent bifurcations between regimes of periodic bursting, chao...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/B:JCNS.0000014104.08299.8b

    authors: Rowat PF,Elson RC

    更新日期:2004-03-01 00:00:00

  • Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons.

    abstract::Neuronal responses are often characterized by the firing rate as a function of the stimulus mean, or the f-I curve. We introduce a novel classification of neurons into Types A, B-, and B+ according to how f-I curves are modulated by input fluctuations. In Type A neurons, the f-I curves display little sensitivity to in...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-009-0142-x

    authors: Lundstrom BN,Famulare M,Sorensen LB,Spain WJ,Fairhall AL

    更新日期:2009-10-01 00:00:00

  • Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    abstract::Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-011-0378-0

    authors: Castro L,Aguiar P

    更新日期:2012-08-01 00:00:00

  • A minimum-error, energy-constrained neural code is an instantaneous-rate code.

    abstract::Sensory neurons code information about stimuli in their sequence of action potentials (spikes). Intuitively, the spikes should represent stimuli with high fidelity. However, generating and propagating spikes is a metabolically expensive process. It is therefore likely that neural codes have been selected to balance en...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-016-0592-x

    authors: Johnson EC,Jones DL,Ratnam R

    更新日期:2016-04-01 00:00:00

  • Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC.

    abstract::Avian brain area HVC is known to be important for the production of birdsong. In zebra finches, each RA-projecting neuron in HVC emits a single burst of spikes during a song motif. The population of neurons is activated in a precisely timed, stereotyped sequence. We propose a model of these burst sequences that relies...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-007-0032-z

    authors: Jin DZ,Ramazanoğlu FM,Seung HS

    更新日期:2007-12-01 00:00:00

  • Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons.

    abstract::In the compensatory optomotor response of the fly the interesting phenomenon of gain control has been observed by Reichardt and colleagues (Reichardt et al., 1983): The amplitude of the response tends to saturate with increasing stimulus size, but different saturation plateaus are assumed with different velocities at ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/BF00962705

    authors: Borst A,Egelhaaf M,Haag J

    更新日期:1995-03-01 00:00:00

  • Encoding whisker deflection velocity within the rodent barrel cortex using phase-delayed inhibition.

    abstract::The primary sensory feature represented within the rodent barrel cortex is the velocity with which a whisker has been deflected. Whisker deflection velocity is encoded within the thalamus via population synchrony (higher deflection velocities entail greater synchrony among the corresponding thalamic population). Thala...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0535-3

    authors: Liu R,Patel M,Joshi B

    更新日期:2014-12-01 00:00:00

  • Spiking neural circuits with dendritic stimulus processors : encoding, decoding, and identification in reproducing kernel Hilbert spaces.

    abstract::We present a multi-input multi-output neural circuit architecture for nonlinear processing and encoding of stimuli in the spike domain. In this architecture a bank of dendritic stimulus processors implements nonlinear transformations of multiple temporal or spatio-temporal signals such as spike trains or auditory and ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0522-8

    authors: Lazar AA,Slutskiy YB

    更新日期:2015-02-01 00:00:00

  • Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture.

    abstract::A Web-based simulation system of the spinal cord circuitry responsible for muscle control is described. The simulator employs two-compartment motoneuron models for S, FR and FF types, with synaptic inputs acting through conductance variations. Four motoneuron pools with their associated interneurons are represented in...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0092-8

    authors: Cisi RR,Kohn AF

    更新日期:2008-12-01 00:00:00

  • Lyapunov exponents computation for hybrid neurons.

    abstract::Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neuron...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0448-6

    authors: Bizzarri F,Brambilla A,Gajani GS

    更新日期:2013-10-01 00:00:00

  • A probabilistic method for determining cortical dynamics during seizures.

    abstract::This work presents a probabilistic method for inferring the parameter ranges in a biologically relevant mathematical model of the cortex most likely to be producing seizures observed in an electrocorticogram (ECoG) signal from a human subject. Additionally, this method produces a probabilistic pathway of the temporal ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-015-0554-8

    authors: Dadok VM,Kirsch HE,Sleigh JW,Lopour BA,Szeri AJ

    更新日期:2015-06-01 00:00:00

  • Modeling grid fields instead of modeling grid cells : An effective model at the macroscopic level and its relationship with the underlying microscopic neural system.

    abstract::A neuron's firing correlates are defined as the features of the external world to which its activity is correlated. In many parts of the brain, neurons have quite simple such firing correlates. A striking example are grid cells in the rodent medial entorhinal cortex: their activity correlates with the animal's positio...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-019-00722-8

    authors: Rosay S,Weber S,Mulas M

    更新日期:2019-08-01 00:00:00

  • Reliability of signal transmission in stochastic nerve axon equations.

    abstract::We introduce a method for computing probabilities for spontaneous activity and propagation failure of the action potential in spatially extended, conductance-based neuronal models subject to noise, based on statistical properties of the membrane potential. We compare different estimators with respect to the quality of...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-015-0586-0

    authors: Sauer M,Stannat W

    更新日期:2016-02-01 00:00:00

  • Independent component analysis of temporal sequences subject to constraints by lateral geniculate nucleus inputs yields all the three major cell types of the primary visual cortex.

    abstract::Information maximization has long been suggested as the underlying coding strategy of the primary visual cortex (V1). Grouping image sequences into blocks has been shown by others to improve agreement between experiments and theory. We have studied the effect of temporal convolution on the formation of spatiotemporal ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1013723131070

    authors: Szatmáry B,Lorincz A

    更新日期:2001-11-01 00:00:00

  • Modeling Hermissenda: I. Differential contributions of IA and IC to type-B cell plasticity.

    abstract::We developed a multicompartmental Hodgkin-Huxley model of the Hermissenda type-B photoreceptor and used it to address the relative contributions of reductions of two K+ currents, IA and IC, to changes in cellular excitability and synaptic strength that occur in these cells after associative learning. We found that red...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/BF00160809

    authors: Fost JW,Clark GA

    更新日期:1996-06-01 00:00:00

  • Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons.

    abstract::Computational modeling of dendritic morphology is a powerful tool for quantitatively describing complex geometrical relationships, uncovering principles of dendritic development, and synthesizing virtual neurons to systematically investigate cellular biophysics and network dynamics. A feature common to many morphologi...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-005-1850-5

    authors: Donohue DE,Ascoli GA

    更新日期:2005-10-01 00:00:00

  • Quantitative estimate of the information relayed by the Schaffer collaterals.

    abstract::Within the theory that describes the hippocampus as a device for the on-line storage of complex memories, the crucial autoassociative operations are ascribed mainly to the recurrent CA3 network. The CA3-to-CA1 connections may still be important, both in completing information retrieval and in re-expanding, with minima...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/BF00961437

    authors: Treves A

    更新日期:1995-09-01 00:00:00

  • System identification of Drosophila olfactory sensory neurons.

    abstract::The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation f...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-010-0265-0

    authors: Kim AJ,Lazar AA,Slutskiy YB

    更新日期:2011-02-01 00:00:00

  • Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study.

    abstract::This paper presents a synergistic parametric and non-parametric modeling study of short-term plasticity (STP) in the Schaffer collateral to hippocampal CA1 pyramidal neuron (SC) synapse. Parametric models in the form of sets of differential and algebraic equations have been proposed on the basis of the current underst...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0098-2

    authors: Song D,Wang Z,Marmarelis VZ,Berger TW

    更新日期:2009-02-01 00:00:00

  • Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons.

    abstract::Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at macroscopic scales. Since for each pixel VSDi signals report the average membrane potential over hundreds of neurons, it seems natural to use a mean-field formalism to model such signals. Here, we present a mean-field...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-017-0668-2

    authors: Zerlaut Y,Chemla S,Chavane F,Destexhe A

    更新日期:2018-02-01 00:00:00

  • On the dynamics of electrically-coupled neurons with inhibitory synapses.

    abstract::We study the dynamics and bifurcations of noise-free neurons coupled by gap junctions and inhibitory synapses, using both delayed delta functions and alpha functions to model the latter. We focus on the case of two cells, as in the studies of Chow and Kopell (2000) and Lewis and Rinzel (2003), but also show that stabl...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-006-9676-3

    authors: Gao J,Holmes P

    更新日期:2007-02-01 00:00:00

  • Statistical-mechanical measure of stochastic spiking coherence in a population of inhibitory subthreshold neurons.

    abstract::By varying the noise intensity, we study stochastic spiking coherence (i.e., collective coherence between noise-induced neural spikings) in an inhibitory population of subthreshold neurons (which cannot fire spontaneously without noise). This stochastic spiking coherence may be well visualized in the raster plot of ne...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-011-0330-3

    authors: Lim W,Kim SY

    更新日期:2011-11-01 00:00:00

  • Propagation of photon noise and information transfer in visual motion detection.

    abstract::The extraction of the direction of motion from the time varying retinal images is one of the most basic tasks any visual system is confronted with. However, retinal images are severely corrupted by photon noise, in particular at low light levels, thus limiting the performance of motion detection mechanisms of what sor...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-005-5906-3

    authors: Shi L,Borst A

    更新日期:2006-04-01 00:00:00

  • Synchronization dynamics of two coupled neural oscillators receiving shared and unshared noisy stimuli.

    abstract::The response of neurons to external stimuli greatly depends on the intrinsic dynamics of the network. Here, the intrinsic dynamics are modeled as coupling and the external input is modeled as shared and unshared noise. We assume the neurons are repetitively firing action potentials (i.e., neural oscillators), are weak...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0120-8

    authors: Ly C,Ermentrout GB

    更新日期:2009-06-01 00:00:00

  • Flexibility and repeatability of finger movements during typing: analysis of multiple degrees of freedom.

    abstract::The kinematics of the hand and fingers were studied during various keystrokes in typing. These movements were defined by 17 degrees of freedom of motion, and methods were developed to identify simplifying strategies in the execution of the task. Most of the analysis was restricted to the 11 degrees of freedom of the f...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008812426305

    authors: Soechting JF,Flanders M

    更新日期:1997-01-01 00:00:00

  • Simulation of gamma rhythms in networks of interneurons and pyramidal cells.

    abstract::Networks of hippocampal interneurons, with pyramidal neurons pharmacologically disconnected, can generate gamma-frequency (20 Hz and above) oscillations. Experiments and models have shown how the network frequency depends on excitation of the interneurons, and on the parameters of GABAA-mediated IPSCs between the inte...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008839312043

    authors: Traub RD,Jefferys JG,Whittington MA

    更新日期:1997-04-01 00:00:00

  • Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis.

    abstract::Characterizing how different cortical rhythms interact and how their interaction changes with sensory stimulation is important to gather insights into how these rhythms are generated and what sensory function they may play. Concepts from information theory, such as Transfer Entropy (TE), offer principled ways to quant...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-010-0236-5

    authors: Besserve M,Schölkopf B,Logothetis NK,Panzeri S

    更新日期:2010-12-01 00:00:00

  • Parallel linear dynamic models can mimic the McGurk effect in clinical populations.

    abstract::One of the most common examples of audiovisual speech integration is the McGurk effect. As an example, an auditory syllable /ba/ recorded over incongruent lip movements that produce "ga" typically causes listeners to hear "da". This report hypothesizes reasons why certain clinical and listeners who are hard of hearing...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-016-0610-z

    authors: Altieri N,Yang CT

    更新日期:2016-10-01 00:00:00

  • The mystery of structure and function of sensory processing areas of the neocortex: a resolution.

    abstract::Many different neural models have been proposed to account for major characteristics of the memory phenomenon family in primates. However, in spite of the large body of neurophysiological, anatomical and behavioral data, there is no direct evidence for supporting one model while falsifying the others. And yet, we can ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1020262214821

    authors: Lorincz A,Szatmáry B,Szirtes G

    更新日期:2002-11-01 00:00:00