A robust spectroscopic method for the determination of protein conformational composition - Application to the annealing of silk.

Abstract:

:The physical and mechanical properties of structural proteins such as silk fibroin can be modified by controlled conformational change, which is regularly monitored by Fourier transform infrared spectroscopy by peak fitting of the amide I band envelope. Although many variables affecting peak shape are well established, there is no fixed methodology to compare and follow secondary structural differences without significant operator input especially where low frequency spectral noise is a problem. The aim of this contribution is to establish a method for such analyses to be carried at high levels of autonomy to prevent subjective or erroneous fitting. A range of approaches was trialled with optimal peak parameters selected based on overall goodness of fit and reproducibility of fit of replicate sample spectra. The method was successfully tested against reference proteins having contrasting β content and the rationale for parameter selection is presented. Further, we applied this method to measure the effect of conformational change on the energy of the amide I band of silk fibroin during annealing. Energy changes were ca. 400 kJ mol-1 of fibroin. To confirm that this energy change was a consequence of increased hydrogen bonding we used a Thioflavin T staining method typically used to identify β aggregate type structures in amyloid plaques. We propose that the approach described herein can aid in the development of silk based materials for biomedical applications where tuning of the physical and mechanical properties of the silk are needed to guarantee optimum activity. STATEMENT OF SIGNIFICANCE:The physical and mechanical properties of proteins including silk fibroin can be modified by controlled structural change, which is regularly monitored by Fourier transform infrared spectroscopy (FTIR) by peak fitting of the amide I band. Currently there is no fixed methodology to compare and follow secondary structural differences without significant operator input leading to subjectivity and error. This contribution establishes a method for such analyses to be carried at high levels of autonomy applicable to a wide range of proteins and the conformational changes have been quantified as a single energy change output, which clearly shows the progression of the annealing process used. We propose that the approach can help in the development of silk based materials for biomedical applications where tuning of the physical and mechanical properties of the silk are needed to guarantee optimum activity.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Belton DJ,Plowright R,Kaplan DL,Perry CC

doi

10.1016/j.actbio.2018.03.058

subject

Has Abstract

pub_date

2018-06-01 00:00:00

pages

355-364

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(18)30190-9

journal_volume

73

pub_type

杂志文章
  • Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy.

    abstract::Stimuli responsive polyelectrolyte nanoparticles have been developed for chemo-photothermal destruction of breast cancer cells. This novel system, called layer by layer Lipo-graph (LBL Lipo-graph), is composed of alternate layers of graphene oxide (GO) and graphene oxide conjugated poly (l-lysine) (GO-PLL) deposited o...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.10.040

    authors: Hashemi M,Omidi M,Muralidharan B,Tayebi L,Herpin MJ,Mohagheghi MA,Mohammadi J,Smyth HDC,Milner TE

    更新日期:2018-01-01 00:00:00

  • Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2-NiFe2O4 biomaterial system.

    abstract::Reverse micelle and chemical hydrolysis techniques have been successfully combined to synthesize composite nanoparticles consisting of a photocatalytic shell of titania and a magnetic core of nickel ferrite. The nature of titania shell, i.e. anatase or brookite, depends on the TiO2 and NiFe2O4 molar ratio. The work pr...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2005.07.007

    authors: Rana S,Rawat J,Misra RD

    更新日期:2005-11-01 00:00:00

  • Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells.

    abstract::Multiple myeloma is a malignant disease characterized by accumulation of clonal plasma cells in the bone marrow. Uncoupling of bone formation and resorption by myeloma cells leads to osteolytic lesions. These are prone to fracture and represent a possible survival space for myeloma cells under treatment causing diseas...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.07.018

    authors: Grab AL,Seckinger A,Horn P,Hose D,Cavalcanti-Adam EA

    更新日期:2019-09-15 00:00:00

  • Pro-angiogenic near infrared-responsive hydrogels for deliberate transgene expression.

    abstract::CuS nanoparticles (CuSNP) are degradable, readily prepared, inexpensive to produce and efficiently cleared from the body. In this work, we explored the feasibility of CuSNP to function as degradable near infrared (NIR) nanotransducers within fibrin-based cellular scaffolds. To prepare NIR-responsive CuSNP hydrogels, f...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.08.006

    authors: Martín-Saavedra F,Escudero-Duch C,Prieto M,Sánchez-Casanova S,López D,Arruebo M,Voellmy R,Santamaría J,Vilaboa N

    更新日期:2018-09-15 00:00:00

  • High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles.

    abstract::Cationic polymer-based vectors have been considered a promising strategy in gene therapy area due to their inherent ability to condense genetic material and successfully transfect cells. However, they usually exhibit high cytotoxicity. In this work, it is proposed the use of a tailor-made gene carrier based on a tri-b...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.10.015

    authors: Cordeiro RA,Santo D,Farinha D,Serra A,Faneca H,Coelho JFJ

    更新日期:2017-01-01 00:00:00

  • Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.

    abstract::Apatite (Ca5(PO4)3OH) has long been considered as an excellent biomaterial to promote bone repairs and implant. Apatite formation induced by negatively charged nanocrystalline TiO2 coatings soaked in simulated body fluid (SBF) was investigated using in situ quartz crystal microbalance (QCM), scanning electron microsco...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.10.003

    authors: Yang Z,Si S,Zeng X,Zhang C,Dai H

    更新日期:2008-05-01 00:00:00

  • Femtosecond laser induced nano-textured micropatterning to regulate cell functions on implanted biomaterials.

    abstract::Posterior capsular opacification (PCO) is the most common complication of cataract surgery. PCO is due to the proliferation, migration, and epithelial-to-mesenchymal transition of the residual lens epithelial cells (LECs) within the lens capsule. As surface topography influences cellular response, we investigated the ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.08.044

    authors: Seo Y,Kim S,Lee HS,Park J,Lee K,Jun I,Seo H,Kim YJ,Yoo Y,Choi BC,Seok HK,Kim YC,Ok MR,Choi J,Joo CK,Jeon H

    更新日期:2020-10-15 00:00:00

  • Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing.

    abstract::The management of diabetic wounds remains a major therapeutic challenge in clinics. Herein, we report a personalized treatment using 3D scaffolds consisting of radially or vertically aligned nanofibers in combination with bone marrow mesenchymal stem cells (BMSCs). The 3D scaffolds have customizable sizes, depths, and...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.03.035

    authors: Chen S,Wang H,Su Y,John JV,McCarthy A,Wong SL,Xie J

    更新日期:2020-05-01 00:00:00

  • Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs.

    abstract::Hydrogels can provide a suitable environment for tissue formation by embedded cells, which makes them suitable for applications in regenerative medicine. However, hydrogels possess only limited mechanical strength, and must therefore be reinforced for applications in load-bearing conditions. In most approaches the rei...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.02.041

    authors: Boere KW,Visser J,Seyednejad H,Rahimian S,Gawlitta D,van Steenbergen MJ,Dhert WJ,Hennink WE,Vermonden T,Malda J

    更新日期:2014-06-01 00:00:00

  • Core-shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration.

    abstract:UNLABELLED:Cardiovascular disease is the leading cause of death in the world. In this study, coaxial electrospinning is employed to fabricate fibers in a core-shell structure with polyvinyl alcohol (PVA) in the core and gelatin in the shell for evaluation as a potential vascular tissue engineering construct. PVA, a syn...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.08.044

    authors: Merkle VM,Tran PL,Hutchinson M,Ammann KR,DeCook K,Wu X,Slepian MJ

    更新日期:2015-11-01 00:00:00

  • Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials.

    abstract::The development of vascular grafts has focused on finding a biomaterial that is non-thrombogenic, minimizes intimal hyperplasia, matches the mechanical properties of native vessels and allows for regeneration of arterial tissue. In this study, the structural and mechanical properties and the vascular cell compatibilit...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.08.001

    authors: McKenna KA,Hinds MT,Sarao RC,Wu PC,Maslen CL,Glanville RW,Babcock D,Gregory KW

    更新日期:2012-01-01 00:00:00

  • Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration.

    abstract::A challenge in using bioactive melt-derived glass in bone regeneration is to produce scaffolds with interconnected pores while maintaining the amorphous nature of the glass and its associated bioactivity. Here we introduce a method for creating porous melt-derived bioactive glass foam scaffolds with low silica content...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.04.030

    authors: Nommeots-Nomm A,Labbaf S,Devlin A,Todd N,Geng H,Solanki AK,Tang HM,Perdika P,Pinna A,Ejeian F,Tsigkou O,Lee PD,Esfahani MHN,Mitchell CA,Jones JR

    更新日期:2017-07-15 00:00:00

  • Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage.

    abstract:UNLABELLED:Chondrocyte dedifferentiation presents a major barrier in engineering functional cartilage constructs. To mitigate the effects of dedifferentiation, this study employed a post-expansion aggregate culture step to enhance the chondrogenic phenotype of passaged articular chondrocytes (ACs) before their integrat...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.07.044

    authors: Huang BJ,Hu JC,Athanasiou KA

    更新日期:2016-10-01 00:00:00

  • ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen.

    abstract::Gene therapies have great potential in regenerative medicine; however, clinical translation has been inhibited by low stability and limited transfection efficiencies. Herein, we incorporate collagen-mimetic peptide (CMP)-linked polyplexes in collagen scaffolds to increase DNA stability by up to 400% and enable tailora...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.08.038

    authors: Urello MA,Kiick KL,Sullivan MO

    更新日期:2017-10-15 00:00:00

  • Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses.

    abstract::Ordered mesoporous glasses based on the 80% SiO(2)-15% CaO-5% P(2)O(5) system including up to 3.5% Ce(2)O(3), 3.5% Ga(2)O(3) or 7.0% ZnO (in mol.%) were synthesized by the evaporation-induced self-assembly process using Pluronic® 123 as a surfactant. An ordered hexagonal mesophase was observed in both the unsubstitute...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.05.033

    authors: Salinas AJ,Shruti S,Malavasi G,Menabue L,Vallet-Regí M

    更新日期:2011-09-01 00:00:00

  • Antibiofilm elastin-like polypeptide coatings: functionality, stability, and selectivity.

    abstract::Antimicrobial peptides (AMPs) are currently receiving interest as an alternative to conventional antibiotics to treat biomaterial-associated infection. However, the inherent instability of such peptides often limits their efficacy in intended clinical applications. Covalent immobilization of AMPs to surfaces is one st...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.10.039

    authors: Atefyekta S,Pihl M,Lindsay C,Heilshorn SC,Andersson M

    更新日期:2019-01-01 00:00:00

  • In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes.

    abstract::Clinically, hypertrophic scarring (HS) is a major concern for patients and has been a challenge for surgeons, as there is a lack of treatments that can intervene early in the formation of HS. This study reports on a Chinese drug, 20(R)-ginsenoside Rg3 (GS-Rg3), which can inhibit in vivo the early formation of HS and l...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.07.040

    authors: Cheng L,Sun X,Hu C,Jin R,Sun B,Shi Y,Zhang L,Cui W,Zhang Y

    更新日期:2013-12-01 00:00:00

  • A humanized bone microenvironment uncovers HIF2 alpha as a latent marker for osteosarcoma.

    abstract::The quest for predictive tumor markers for osteosarcoma (OS) has not well progressed over the last two decades due to a lack of preclinical models. The aim of this study was to investigate if microenvironmental modifications in an original humanized in vivo model alter the expression of OS tumor markers. Human bone mi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.02.051

    authors: Wagner F,Holzapfel BM,Martine LC,McGovern J,Lahr CA,Boxberg M,Prodinger PM,Grässel S,Loessner D,Hutmacher DW

    更新日期:2019-04-15 00:00:00

  • Cold atmospheric pressure gas plasma enhances the wear performance of ultra-high molecular weight polyethylene.

    abstract::Ultra-high molecular weight polyethylene (UHMWPE) is frequently employed in joint replacements because of its high biocompatibility; however, this material does not exhibit particularly strong wear performance, thus potentially reducing the longevity of such devices. Numerous techniques have been investigated to incre...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.12.007

    authors: Perni S,Kong MG,Prokopovich P

    更新日期:2012-03-01 00:00:00

  • Immobilization of glycoproteins, such as VEGF, on biodegradable substrates.

    abstract::Attachment of growth factors to biodegradable polymers, such as poly(lactide-co-glycolide) (PLGA), may enhance and/or accelerate integration of tissue engineering scaffolds. Although proteins are commonly bound via abundant amino groups, a more selective approach may increase bioactivity of immobilized molecules. In t...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.02.017

    authors: Sharon JL,Puleo DA

    更新日期:2008-07-01 00:00:00

  • Development of an image Mean Square Displacement (iMSD)-based method as a novel approach to study the intracellular trafficking of nanoparticles.

    abstract:UNLABELLED:Fluorescence microscopy and spectroscopy techniques are commonly used to investigate complex and interacting biological systems (e.g. proteins and nanoparticles in living cells), since these techniques can explore intracellular dynamics with high time resolution at the nanoscale. Here we extended one of the ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.07.031

    authors: Digiacomo L,Digman MA,Gratton E,Caracciolo G

    更新日期:2016-09-15 00:00:00

  • Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats.

    abstract::Human embryonic stem cells (hESCs) are an exciting cell source as they offer an unlimited supply of cells that can differentiate into all cell types for regenerative medicine applications. To date, there has been no report on hESCs with calcium phosphate cement (CPC) scaffolds for bone regeneration in vivo. The object...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.06.027

    authors: Liu X,Wang P,Chen W,Weir MD,Bao C,Xu HH

    更新日期:2014-10-01 00:00:00

  • Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging.

    abstract::A pH-sensitive copolymer PAsp(DIP)-b-PAsp(MEA) (PDPM) was synthesized and self-assembled to micelle loading chemotherapeutic drug doxorubicin (DOX) and introducing a gold nanocage structure for photothermo-chemotherapy and photoacoustic imaging. After further surface modification with polyethylene glycol (PEG), the DO...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.10.018

    authors: Zhou G,Xiao H,Li X,Huang Y,Song W,Song L,Chen M,Cheng D,Shuai X

    更新日期:2017-12-01 00:00:00

  • Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells.

    abstract::Engineered three-dimensional biomaterials are known to affect the regenerative capacity of stem cells. The extent to which these materials can modify cellular activities is still poorly understood, particularly for adipose-derived stem cells (ASCs). This study evaluates PEGylated fibrin (P-fibrin) gels as an ASC-carry...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.01.012

    authors: Chung E,Rytlewski JA,Merchant AG,Dhada KS,Lewis EW,Suggs LJ

    更新日期:2015-04-01 00:00:00

  • Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries.

    abstract::Human mesenchymal stem cells (hMSCs) have tremendous potential as a cell source for regenerative medicine due to their capacity for differentiation into a wide range of connective tissue cell types. Although significant progress has been made in the identification of defined growth factor conditions to induce lineage ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.07.023

    authors: Phillips JE,Petrie TA,Creighton FP,García AJ

    更新日期:2010-01-01 00:00:00

  • The in vivo anti-fibrotic function of calcium sensitive receptor (CaSR) modulating poly(p-dioxanone-co-l-phenylalanine) prodrug.

    abstract::In present study, the apoptosis induction and proliferation suppression effects of l-phenylalanine (l-Phe) on fibroblasts were confirmed. The action sites of l-Phe on fibroblasts suppression were deduced to be calcium sensitive receptor (CaSR) which could cause the release of endoplasmic reticulum (ER) Ca2+ stores; di...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.04.018

    authors: Wang B,Wen A,Feng C,Niu L,Xiao X,Luo L,Shen C,Zhu J,Lei J,Zhang X

    更新日期:2018-06-01 00:00:00

  • The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.

    abstract::Bioactive ions released from bioceramics play important roles in bone regeneration; however, it is unclear how each ionic composition in complex bioceramics exerts its specific effect on bone regeneration. The aim of this study is to elucidate the functional effects of Sr and Si ions in bioceramics on the regeneration...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.08.015

    authors: Mao L,Xia L,Chang J,Liu J,Jiang L,Wu C,Fang B

    更新日期:2017-10-01 00:00:00

  • Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits.

    abstract:UNLABELLED:The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly alloca...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.09.026

    authors: Chang NJ,Lin CC,Shie MY,Yeh ML,Li CF,Liang PI,Lee KW,Shen PH,Chu CJ

    更新日期:2015-12-01 00:00:00

  • Pyrrole-hyaluronic acid conjugates for decreasing cell binding to metals and conducting polymers.

    abstract::Surface modification of electrically conductive biomaterials has been studied to improve biocompatibility for a number of applications, such as implantable sensors and microelectrode arrays. In this study we electrochemically coated electrodes with biocompatible and non-cell adhesive hyaluronic acid (HA) to reduce cel...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.06.011

    authors: Lee JY,Schmidt CE

    更新日期:2010-11-01 00:00:00

  • Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation.

    abstract::This study investigated whether a novel alkali-based surface modification enhances in vitro mineralization as well as in vivo bone formation around titanium (Ti) implants in a femoral condyle model of 36 male Wister rats. All implant surfaces were grit-blasted and then received either acid-etching treatment, alkali-ba...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.05.016

    authors: Camargo WA,Takemoto S,Hoekstra JW,Leeuwenburgh SCG,Jansen JA,van den Beucken JJJP,Alghamdi HS

    更新日期:2017-07-15 00:00:00