Collagen fibre orientation in human bridging veins.

Abstract:

:Bridging veins (BVs) drain the blood from the cerebral cortex into dural sinuses. BVs have one end attached to the brain and the other to the superior sagittal sinus (SSS), which is attached to the skull. Relative movement between these two structures can cause BV to rupture producing acute subdural haematoma, a head injury with a mortality rate between 30 and 90%. A clear understanding of the BVs microstructure is required to increase the biofidelity of BV models when simulating head impacts. Twelve fresh BV samples draining in the superior sagittal sinus (SSS) from a single human cadaver were cut open along their length and placed on an inverted multiphoton microscope. To ensure that the BVs were aligned with the axial direction an in-house built, uniaxial tension set-up was used. Two scans were performed per sample. Before the first scan, a minor displacement was applied to align the tissue; then, a second scan was taken applying 50% strain. Each BV was scanned for a length of 5 mm starting from the drainage site into the SSS. Imaging was performed on a Zeiss LSM780 microscope with an 25[Formula: see text] water immersion objective (NA 0.8), coupled to a tunable MaiTai DS (Spectraphysics) pulsed laser with the wavelength set at 850 nm. Second harmonic and fluorescence signals were captured in forward and backward direction on binary GaAsP (BiG) detectors and stored as four colour Z-stacks. Prior to the calculation of the local orientations, acquired Z-stacks were denoised and enhanced to highlight fibrillar structures from the background. Then, for each Z-plane of the stack, the ImageJ plugin OrientationJ was used to extract the local 2D orientations of the fibres based on structure tensors. Two kinds of collagen architectures were seen. The most common (8[Formula: see text]12 samples) was single layered and had a uniform distribution of collagen. The less common (4[Formula: see text]12 samples) had 2 layers and 7 to 34 times thicker collagen bundles on the outer layer. Fibre angle analysis showed that collagen was oriented mainly along the axial direction of the vessel. The von Mises fittings showed that in order to describe the fibre distribution 3 components were needed with mean angles [Formula: see text] at [Formula: see text] 0.35, 0.21, [Formula: see text] 0.02 rad or [Formula: see text] 20.2[Formula: see text], 12.1[Formula: see text], [Formula: see text] 1.2[Formula: see text] relative to the vessel's axial direction which was also the horizontal scan direction.

authors

Kapeliotis M,Gavrila Laic RA,Peñas AJ,Vander Sloten J,Vanden Berghe P,Famaey N,Depreitere B

doi

10.1007/s10237-020-01349-w

subject

Has Abstract

pub_date

2020-12-01 00:00:00

pages

2455-2489

issue

6

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-020-01349-w

journal_volume

19

pub_type

杂志文章
  • Modeling initial strain distribution in soft tissues with application to arteries.

    abstract::A general theory for computing and identifying the stress field in a residually stressed tissue is presented in this paper. The theory is based on the assumption that a stress free state is obtained by letting each point deform independently of its adjacent points. This local unloading represents an initial strain, an...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0008-8

    authors: Olsson T,Stålhand J,Klarbring A

    更新日期:2006-03-01 00:00:00

  • Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function.

    abstract::A three-dimensional finite-element fluid/structure interaction model of an intravascular lymphatic valve was constructed, and its properties were investigated under both favourable and adverse pressure differences, simulating valve opening and valve closure, respectively. The shear modulus of the neo-Hookean material ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01325-4

    authors: Bertram CD

    更新日期:2020-12-01 00:00:00

  • Growing skin: tissue expansion in pediatric forehead reconstruction.

    abstract::Tissue expansion is a common surgical procedure to grow extra skin through controlled mechanical over-stretch. It creates skin that matches the color, texture, and thickness of the surrounding tissue, while minimizing scars and risk of rejection. Despite intense research in tissue expansion and skin growth, there is a...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0357-4

    authors: Zöllner AM,Buganza Tepole A,Gosain AK,Kuhl E

    更新日期:2012-07-01 00:00:00

  • Remineralization of mechanical loaded resin-dentin interface: a transitional and synchronized multistep process.

    abstract::This study evaluated the ability of different in vitro mechanical loading tests to promote new mineral formation at bonded dentin interfaces. This research demonstrated a sequential transition in the dentin remineralizing procedure through the analysis of the mineral and matrix gradients. Mechanical loading in phospho...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0573-9

    authors: Toledano M,Aguilera FS,Cabello I,Osorio R

    更新日期:2014-11-01 00:00:00

  • Simulated tissue growth for 3D printed scaffolds.

    abstract::Experiments have demonstrated biological tissues grow by mechanically sensing their localized curvature, therefore making geometry a key consideration for tissue scaffold design. We developed a simulation approach for modeling tissue growth on beam-based geometries of repeating unit cells, with four lattice topologies...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1040-9

    authors: Egan PF,Shea KA,Ferguson SJ

    更新日期:2018-10-01 00:00:00

  • Instrumentation and procedures for estimating the constitutive parameters of inhomogeneous elastic membranes.

    abstract::This study presents a method for estimating the spatial variations in material properties of elastic membranes, such as biological tissue, which contain both inhomogeneous strain fields and inhomogeneous material properties. In order to validate the method, an inhomogeneous, isotropic rubber membrane was biaxially loa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-002-0019-7

    authors: Nielsen PM,Malcolm DT,Hunter PJ,Charette PG

    更新日期:2002-12-01 00:00:00

  • Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms.

    abstract::In this manuscript, we present a combined experimental and computational technique that can identify the heterogeneous elastic properties of planar soft tissues. By combining inverse membrane analysis, digital image correlation, and bulge inflation tests, we are able to identify a tissue's mechanical properties locall...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0646-9

    authors: Davis FM,Luo Y,Avril S,Duprey A,Lu J

    更新日期:2015-10-01 00:00:00

  • The influence of fluid shear stress on the remodeling of the embryonic primary capillary plexus.

    abstract::The primary capillary plexus in early yolk sacs is remodeled into matured vitelline vessels aligned in the direction of blood flow at the onset of cardiac contraction. We hypothesized that the influence of fluid shear stress on cellular behaviors may be an underlying mechanism by which some existing capillary channels...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0001-2

    authors: Blatnik JS,Schmid-Schönbein GW,Sung LA

    更新日期:2005-12-01 00:00:00

  • A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils.

    abstract::Cardiovascular implantable devices alter the biofluid dynamics and biochemistry of the blood in which they are placed. These perturbations can lead to thrombus formation which may or may not be desired, depending on the application. In this work, a computational model is developed that couples biofluid dynamics and bi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1059-y

    authors: Horn JD,Maitland DJ,Hartman J,Ortega JM

    更新日期:2018-12-01 00:00:00

  • Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia.

    abstract::Load-induced fluid flow acts as an important biophysical signal for bone cell mechanotransduction in vivo, where the mechanical environment is thought to be monitored by integrin and primary cilia mechanoreceptors on the cell body. However, precisely how integrin- and primary cilia-based mechanosensors interact with t...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0631-3

    authors: Vaughan TJ,Mullen CA,Verbruggen SW,McNamara LM

    更新日期:2015-08-01 00:00:00

  • Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.

    abstract::Prior studies indicated that mechanical loading influences cell turnover and matrix remodeling in tissues, suggesting that mechanical stimuli can play an active role in engineering artificial tissues. While most tissue culture studies focus on influence of uniaxial loading or constraints, effects of multi-axial loadin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0448-x

    authors: Hu JJ,Liu YC,Chen GW,Wang MX,Lee PY

    更新日期:2013-10-01 00:00:00

  • A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells.

    abstract::Intracellular calcium dynamics plays an important role in the regulation of vascular endothelial cellular functions. In order to probe the intracellular calcium dynamic response under synergistic effect of wall shear stress (WSS) and adenosine triphosphate (ATP) signals, a novel microfluidic device, which provides the...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1076-x

    authors: Chen ZZ,Yuan WM,Xiang C,Zeng DP,Liu B,Qin KR

    更新日期:2019-02-01 00:00:00

  • On the representation of effective stress for computing hemolysis.

    abstract::Hemolysis is a major concern in blood-circulating devices, which arises due to hydrodynamic loading on red blood cells from ambient flow environment. Hemolysis estimation models have often been used to aid hemocompatibility design. The preponderance of hemolysis models was formulated on the basis of laminar flows. How...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-01108-y

    authors: Wu P,Gao Q,Hsu PL

    更新日期:2019-06-01 00:00:00

  • Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.

    abstract::Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0057-7

    authors: Milan JL,Wendling-Mansuy S,Jean M,Chabrand P

    更新日期:2007-11-01 00:00:00

  • Urethral lumen occlusion by artificial sphincteric devices: a computational biomechanics approach.

    abstract::The action induced by artificial sphincteric devices to provide urinary continence is related to the problem of evaluating the interaction between the occlusive cuff and the urethral duct. The intensity and distribution of the force induced within the region of application determine a different occlusion process and p...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0897-3

    authors: Natali AN,Carniel EL,Fontanella CG,Todros S,De Benedictis GM,Cerruto MA,Artibani W

    更新日期:2017-08-01 00:00:00

  • Contraction of collecting lymphatics: organization of pressure-dependent rate for multiple lymphangions.

    abstract::The paper describes the extension of a previously developed model of pressure-dependent contraction rate to the case of multiple lymphangions. Mechanical factors are key modulators of active lymphatic pumping. As part of the evolution of our lumped-parameter model to match experimental findings, we have designed an al...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1042-7

    authors: Bertram CD,Macaskill C,Davis MJ,Moore JE Jr

    更新日期:2018-10-01 00:00:00

  • White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities.

    abstract::A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553-658 Pa) ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0643-z

    authors: Sullivan S,Eucker SA,Gabrieli D,Bradfield C,Coats B,Maltese MR,Lee J,Smith C,Margulies SS

    更新日期:2015-08-01 00:00:00

  • Computational analysis of biomechanical contributors to possible endovascular graft failure.

    abstract::This paper evaluates numerically coupled blood flow and wall structure interactions in a representative stented abdominal aortic aneurysm (AAA) model, leading potentially to endovascular graft (EVG) failure. A total of 12 biomechanical contributors to possible EVG migration were considered. The results show that after...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0003-0

    authors: Li Z,Kleinstreuer C,Farber M

    更新日期:2005-12-01 00:00:00

  • A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters.

    abstract::Inferior vena cava (IVC) filters are medical devices designed to provide a mechanical barrier to the passage of emboli from the deep veins of the legs to the heart and lungs. Despite decades of development and clinical use, IVC filters still fail to prevent the passage of all hazardous emboli. The objective of this st...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0857-3

    authors: Aycock KI,Campbell RL,Manning KB,Craven BA

    更新日期:2017-06-01 00:00:00

  • Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    abstract::We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0658-0

    authors: Jiang Y,Li G,Qian LX,Liang S,Destrade M,Cao Y

    更新日期:2015-10-01 00:00:00

  • Finite-element analysis of geometrical factors in micro-indentation of pollen tubes.

    abstract::Micro-indentation is a new experimental approach to assess physical cellular properties. Here we attempt to quantify the contribution of geometrical parameters to a cylindrical plant cell's resistance to lateral deformation. This information is important to correctly interpret data obtained from experiments using the ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0010-1

    authors: Bolduc JE,Lewis LJ,Aubin CE,Geitmann A

    更新日期:2006-11-01 00:00:00

  • Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.

    abstract::The superficial femoral artery (SFA) is a typical atherosclerosis-prone site. We aimed to explore whether the tortuosity of the SFA associates with the occurrence of atherosclerosis and investigate how vascular tortuosity influences the characteristics of blood flow. Ten patients diagnosed with atherosclerotic disease...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01118-4

    authors: Li X,Liu X,Li X,Xu L,Chen X,Liang F

    更新日期:2019-08-01 00:00:00

  • Assessment of boundary conditions for CFD simulation in human carotid artery.

    abstract::Computational fluid dynamics (CFD) is an increasingly used method for investigation of hemodynamic parameters and their alterations under pathological conditions, which are important indicators for diagnosis of cardiovascular disease. In hemodynamic simulation models, the employment of appropriate boundary conditions ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1045-4

    authors: Xu P,Liu X,Zhang H,Ghista D,Zhang D,Shi C,Huang W

    更新日期:2018-12-01 00:00:00

  • Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.

    abstract::Plaque progression and vulnerability are influenced by many risk factors. Our goal is to find a simple method to combine multiple risk factors for better plaque development prediction. Intravascular ultrasound data at baseline and follow-up were acquired from nine patients, and fluid-structure interaction models were ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01143-3

    authors: Wang L,Tang D,Maehara A,Molony D,Zheng J,Samady H,Wu Z,Lu W,Zhu J,Ma G,Giddens DP,Stone GW,Mintz GS

    更新日期:2019-10-01 00:00:00

  • Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique.

    abstract::The present study aims at investigating biomechanical failure behaviour of human aneurismal aortic tissues so as to diagnose the rupture risk of aneurysms more accurately. An inflation test is performed on aneurismal aortic tissues up to failure and full-field measurements are achieved using stereo digital image corre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0356-5

    authors: Kim JH,Avril S,Duprey A,Favre JP

    更新日期:2012-07-01 00:00:00

  • Young's modulus of elasticity of Schlemm's canal endothelial cells.

    abstract::Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0156-3

    authors: Zeng D,Juzkiw T,Read AT,Chan DW,Glucksberg MR,Ethier CR,Johnson M

    更新日期:2010-02-01 00:00:00

  • What factors determine the number of nonmuscle myosin II in the sarcomeric unit of stress fibers?

    abstract::Actin stress fibers (SFs), a contractile apparatus in nonmuscle cells, possess a contractile unit that is apparently similar to the sarcomere of myofibrils in muscles. The function of SFs has thus often been addressed based on well-characterized properties of muscles. However, unlike the fixed number of myosin molecul...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01375-8

    authors: Saito T,Huang W,Matsui TS,Kuragano M,Takahashi M,Deguchi S

    更新日期:2020-08-10 00:00:00

  • Effects of left ventricle wall thickness uncertainties on cardiac mechanics.

    abstract::Computational models of the heart have reached a level of maturity that enables sophisticated patient-specific simulations and hold potential for important applications in diagnosis and therapy planning. However, such clinical use puts strict demands on the reliability and accuracy of the models and requires the sensi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01153-1

    authors: Campos JO,Sundnes J,Dos Santos RW,Rocha BM

    更新日期:2019-10-01 00:00:00

  • Injury risk prediction from computational simulations of ocular blast loading.

    abstract::A predictive Lagrangian-Eulerian finite element eye model was used to analyze 2.27 and 0.45 kg trinitrotoluene equivalent blasts detonated from 24 different locations. Free air and ground level blasts were simulated directly in front of the eye and at lateral offset locations with box, average, less protective, and mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0830-1

    authors: Weaver AA,Stitzel SM,Stitzel JD

    更新日期:2017-04-01 00:00:00

  • Perfluorocarbon induces alveolar epithelial cell response through structural and mechanical remodeling.

    abstract::During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their r...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1005-z

    authors: André Dias S,Planus E,Angely C,Lotteau L,Tissier R,Filoche M,Louis B,Pelle G,Isabey D

    更新日期:2018-08-01 00:00:00