Controlling for localised spatio-temporal autocorrelation in long-term air pollution and health studies.


:Estimating the long-term health impact of air pollution using an ecological spatio-temporal study design is a challenging task, due to the presence of residual spatio-temporal autocorrelation in the health counts after adjusting for the covariate effects. This autocorrelation is commonly modelled by a set of random effects represented by a Gaussian Markov random field (GMRF) prior distribution, as part of a hierarchical Bayesian model. However, GMRF models typically assume the random effects are globally smooth in space and time, and thus are likely to be collinear to any spatially and temporally smooth covariates such as air pollution. Such collinearity leads to poor estimation performance of the estimated fixed effects, and motivated by this epidemiological problem, this paper proposes new GMRF methodology to allow for localised spatio-temporal smoothing. This means random effects that are either geographically or temporally adjacent are allowed to be autocorrelated or conditionally independent, which allows more flexible autocorrelation structures to be represented. This increased flexibility results in improved fixed effects estimation compared with global smoothing models, which is evidenced by our simulation study. The methodology is then applied to the motivating study investigating the long-term effects of air pollution on respiratory ill health in Greater Glasgow, Scotland between 2007 and 2011.


Stat Methods Med Res


Lee D,Mitchell R




Has Abstract


2014-12-01 00:00:00














  • Separating variability in healthcare practice patterns from random error.

    abstract::Improving the quality of care that patients receive is a major focus of clinical research, particularly in the setting of cardiovascular hospitalization. Quality improvement studies seek to estimate and visualize the degree of variability in dichotomous treatment patterns and outcomes across different providers, where...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Thomas LE,Schulte PJ

    更新日期:2019-04-01 00:00:00

  • Copas-like selection model to correct publication bias in systematic review of diagnostic test studies.

    abstract::The accuracy of a diagnostic test, which is often quantified by a pair of measures such as sensitivity and specificity, is critical for medical decision making. Separate studies of an investigational diagnostic test can be combined through meta-analysis; however, such an analysis can be threatened by publication bias....

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Piao J,Liu Y,Chen Y,Ning J

    更新日期:2019-10-01 00:00:00

  • Interpretation of mixed models and marginal models with cohort attrition due to death and drop-out.

    abstract::Mixed models estimated by maximum likelihood and marginal models estimated by generalized estimating equations are the standard methods for the analysis of longitudinal data. However, their use is highly debated when attrition may be due to death. While some authors consider that mixed model estimates are interpretabl...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Rouanet A,Helmer C,Dartigues JF,Jacqmin-Gadda H

    更新日期:2019-02-01 00:00:00

  • Joint latent class models for longitudinal and time-to-event data: a review.

    abstract::Most statistical developments in the joint modelling area have focused on the shared random-effect models that include characteristics of the longitudinal marker as predictors in the model for the time-to-event. A less well-known approach is the joint latent class model which consists in assuming that a latent class s...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章,评审


    authors: Proust-Lima C,Séne M,Taylor JM,Jacqmin-Gadda H

    更新日期:2014-02-01 00:00:00

  • Letter to the editor: Fitting truncated normal distributions.

    abstract::I comment here on a recent paper in this journal, on the fitting of truncated normal distributions by the EM algorithm. I show that the fitting of such distributions by direct numerical maximization of likelihood (rather than EM) is straightforward, contrary to an assertion made by the authors of that paper. ...

    journal_title:Statistical methods in medical research

    pub_type: 评论,信件


    authors: MacDonald IL

    更新日期:2018-12-01 00:00:00

  • Controlling false positive selections in high-dimensional regression and causal inference.

    abstract::Guarding against false positive selections is important in many applications. We discuss methods based on subsampling and sample splitting for controlling the expected number of false positives and assigning p-values. They are generic and especially useful for high-dimensional settings. We review encouraging results f...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Bühlmann P,Rütimann P,Kalisch M

    更新日期:2013-10-01 00:00:00

  • Inferences about population means of health care costs.

    abstract::The analysis of health care costs is complicated by the skewed and heteroscedastic nature of their distribution with possibly additional zero values. Statistical methods that do not adjust for these features can lead to incorrect conclusions. This paper reviews recent developments in statistical methods for the analys...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章,评审


    authors: Zhou XH

    更新日期:2002-08-01 00:00:00

  • An ad hoc method for dual adjusting for measurement errors and nonresponse bias for estimating prevalence in survey data: Application to Iranian mental health survey on any illicit drug use.

    abstract::Purpose The prevalence estimates of binary variables in sample surveys are often subject to two systematic errors: measurement error and nonresponse bias. A multiple-bias analysis is essential to adjust for both biases. Methods In this paper, we linked the latent class log-linear and proxy pattern-mixture models to ad...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Khalagi K,Mansournia MA,Motevalian SA,Nourijelyani K,Rahimi-Movaghar A,Bakhtiyari M

    更新日期:2018-10-01 00:00:00

  • Longitudinal prostate-specific antigen reference ranges: Choosing the underlying model of age-related changes.

    abstract::Serial measurements of prostate-specific antigen (PSA) are used as a biomarker for men diagnosed with prostate cancer following an active monitoring programme. Distinguishing pathological changes from natural age-related changes is not straightforward. Here, we compare four approaches to modelling age-related change i...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Simpkin AJ,Metcalfe C,Martin RM,Lane JA,Donovan JL,Hamdy FC,Neal DE,Tilling K

    更新日期:2016-10-01 00:00:00

  • Accurate quantification of uncertainty in epidemic parameter estimates and predictions using stochastic compartmental models.

    abstract::Stochastic transmission dynamic models are needed to quantify the uncertainty in estimates and predictions during outbreaks of infectious diseases. We previously developed a calibration method for stochastic epidemic compartmental models, called Multiple Shooting for Stochastic Systems (MSS), and demonstrated its comp...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Zimmer C,Leuba SI,Cohen T,Yaesoubi R

    更新日期:2019-12-01 00:00:00

  • Stochastic models of sequence evolution including insertion-deletion events.

    abstract::Comparison of sequences that have descended from a common ancestor based on an explicit stochastic model of substitutions, insertions and deletions has risen to prominence in the last decade. Making statements about the positions of insertions-deletions (abbr. indels) is central in sequence and genome analysis and is ...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Miklós I,Novák A,Satija R,Lyngsø R,Hein J

    更新日期:2009-10-01 00:00:00

  • Pattern discovery of health curves using an ordered probit model with Bayesian smoothing and functional principal component analysis.

    abstract::This article is motivated by the need for discovering patterns of patients' health based on their daily settings of care to aid the health policy-makers to improve the effectiveness of distributing funding for health services. The hidden process of one's health status is assumed to be a continuous smooth function, cal...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Wang S,Nie Y,Sutherland JM,Wang L

    更新日期:2020-09-25 00:00:00

  • Estimating the dependence of mixed sensitive response types in randomized response technique.

    abstract::Sensitive questions are often involved in healthcare or medical survey research. Much empirical evidence has shown that the randomized response technique is useful for the collection of truthful responses. However, few studies have discussed methods to estimate the dependence of sensitive responses of multiple types. ...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Chu AM,So MK,Chan TW,Tiwari A

    更新日期:2020-03-01 00:00:00

  • Joint modelling for organ transplantation outcomes for patients with diabetes and the end-stage renal disease.

    abstract::This article is motivated by jointly modelling longitudinal and time-to-event clinical data of patients with diabetes and end-stage renal disease. All patients are on the waiting list for the pancreas transplant after kidney transplant, and some of them have a pancreas transplant before kidney transplant failure or de...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Dong JJ,Wang S,Wang L,Gill J,Cao J

    更新日期:2019-09-01 00:00:00

  • A robust imputation method for missing responses and covariates in sample selection models.

    abstract::Sample selection arises when the outcome of interest is partially observed in a study. Although sophisticated statistical methods in the parametric and non-parametric framework have been proposed to solve this problem, it is yet unclear how to deal with selectively missing covariate data using simple multiple imputati...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Ogundimu EO,Collins GS

    更新日期:2019-01-01 00:00:00

  • Combining estimates of the odds ratio: the state of the art.

    abstract::Medical research commonly relies on the combination of 2 x 2 tables of counted data for making inferences about treatment effects or about the causes of disease. This article reviews point estimation and interval estimation for a common odds ratio. Traditional methods for providing these estimates face special challen...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章,评审


    authors: Emerson JD

    更新日期:1994-01-01 00:00:00

  • Bayesian modeling and prediction of accrual in multi-regional clinical trials.

    abstract::In multi-regional trials, the underlying overall and region-specific accrual rates often do not hold constant over time and different regions could have different start-up times, which combined with initial jump in accrual within each region often leads to a discontinuous overall accrual rate, and these issues associa...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Deng Y,Zhang X,Long Q

    更新日期:2017-04-01 00:00:00

  • Individualized dynamic prediction of prostate cancer recurrence with and without the initiation of a second treatment: Development and validation.

    abstract::With the emergence of rich information on biomarkers after treatments, new types of prognostic tools are being developed: dynamic prognostic tools that can be updated at each new biomarker measurement. Such predictions are of interest in oncology where after an initial treatment, patients are monitored with repeated b...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Sène M,Taylor JM,Dignam JJ,Jacqmin-Gadda H,Proust-Lima C

    更新日期:2016-12-01 00:00:00

  • Estimation of regression quantiles in complex surveys with data missing at random: An application to birthweight determinants.

    abstract::The estimation of population parameters using complex survey data requires careful statistical modelling to account for the design features. This is further complicated by unit and item nonresponse for which a number of methods have been developed in order to reduce estimation bias. In this paper, we address some issu...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Geraci M

    更新日期:2016-08-01 00:00:00

  • Adaptive non-inferiority margins under observable non-constancy.

    abstract::A central assumption in the design and conduct of non-inferiority trials is that the active-control therapy will have the same degree of effectiveness in the planned non-inferiority trial as in the prior placebo-controlled trials used to define the non-inferiority margin. This is referred to as the 'constancy' assumpt...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Hanscom B,Hughes JP,Williamson BD,Donnell D

    更新日期:2019-10-01 00:00:00

  • Bayesian nonparametric inference for the three-class Youden index and its associated optimal cutoff points.

    abstract::The three-class Youden index serves both as a measure of medical test accuracy and a criterion to choose the optimal pair of cutoff values for classifying subjects into three ordinal disease categories (e.g. no disease, mild disease, advanced disease). We present a Bayesian nonparametric approach for estimating the th...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Carvalho VI,Branscum AJ

    更新日期:2018-03-01 00:00:00

  • Unbiasedness and efficiency of non-parametric and UMVUE estimators of the probabilistic index and related statistics.

    abstract::In reliability theory, diagnostic accuracy, and clinical trials, the quantity P ( X > Y ) + ...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Verbeeck J,Deltuvaite-Thomas V,Berckmoes B,Burzykowski T,Aerts M,Thas O,Buyse M,Molenberghs G

    更新日期:2020-12-01 00:00:00

  • Receiver operating characteristic curve estimation for time to event with semicompeting risks and interval censoring.

    abstract::Semicompeting risks and interval censoring are frequent in medical studies, for instance when a disease may be diagnosed only at times of visit and disease onset is in competition with death. To evaluate the ability of markers to predict disease onset in this context, estimators of discrimination measures must account...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Jacqmin-Gadda H,Blanche P,Chary E,Touraine C,Dartigues JF

    更新日期:2016-12-01 00:00:00

  • The cross-validated AUC for MCP-logistic regression with high-dimensional data.

    abstract::We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selec...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Jiang D,Huang J,Zhang Y

    更新日期:2013-10-01 00:00:00

  • Bayesian sample size calculation for estimation of the difference between two binomial proportions.

    abstract::In this study, we discuss a decision theoretic or fully Bayesian approach to the sample size question in clinical trials with binary responses. Data are assumed to come from two binomial distributions. A Dirichlet distribution is assumed to describe prior knowledge of the two success probabilities p1 and p2. The param...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Pezeshk H,Nematollahi N,Maroufy V,Marriott P,Gittins J

    更新日期:2013-12-01 00:00:00

  • Time-dependent efficacy of longitudinal biomarker for clinical endpoint.

    abstract::Joint modelling of longitudinal biomarker and event-time processes has gained its popularity in recent years as they yield more accurate and precise estimates. Considering this modelling framework, a new methodology for evaluating the time-dependent efficacy of a longitudinal biomarker for clinical endpoint is propose...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Kolamunnage-Dona R,Williamson PR

    更新日期:2018-06-01 00:00:00

  • Statistical methods in computational anatomy.

    abstract::This paper reviews recent developments by the Washington/Brown groups for the study of anatomical shape in the emerging new discipline of computational anatomy. Parametric representations of anatomical variation for computational anatomy are reviewed, restricted to the assumption of small deformations. The generation ...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章,评审


    authors: Miller M,Banerjee A,Christensen G,Joshi S,Khaneja N,Grenander U,Matejic L

    更新日期:1997-09-01 00:00:00

  • Bayesian spatially dependent variable selection for small area health modeling.

    abstract::Statistical methods for spatial health data to identify the significant covariates associated with the health outcomes are of critical importance. Most studies have developed variable selection approaches in which the covariates included appear within the spatial domain and their effects are fixed across space. Howeve...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Choi J,Lawson AB

    更新日期:2018-01-01 00:00:00

  • Predicting brain activity using a Bayesian spatial model.

    abstract::Increasing the clinical applicability of functional neuroimaging technology is an emerging objective, e.g. for diagnostic and treatment purposes. We propose a novel Bayesian spatial hierarchical framework for predicting follow-up neural activity based on an individual's baseline functional neuroimaging data. Our appro...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章


    authors: Derado G,Bowman FD,Zhang L,Alzheimer's Disease Neuroimaging Initiative Investigators.

    更新日期:2013-08-01 00:00:00

  • Measurement error correction using validation data: a review of methods and their applicability in case-control studies.

    abstract::Measurement error is a serious problem in the analysis of epidemiological data. In the past 20 years, a large number of methods for the correction of measurement error have been developed. While at the beginning mostly methods for cohort studies were considered, recently more attention has been paid to case-control st...

    journal_title:Statistical methods in medical research

    pub_type: 杂志文章,评审


    authors: Thürigen D,Spiegelman D,Blettner M,Heuer C,Brenner H

    更新日期:2000-10-01 00:00:00