Automated landmarking and labeling of fully and partially scanned spinal columns in CT images.

Abstract:

:The spinal column is one of the most distinguishable structures in CT scans of the superior part of the human body. It is not necessary to segment the spinal column in order to use it as a frame of reference. It is sufficient to place landmarks and the appropriate anatomical labels at intervertebral disks and vertebrae. In this paper, we present an automated system for landmarking and labeling spinal columns in 3D CT datasets. We designed this framework with two goals in mind. First, we relaxed input data requirements found in the literature, and we label both full and partial spine scans. Secondly, we intended to fulfill the performance requirement for daily clinical use and developed a high throughput system capable of processing thousands of slices in just a few minutes. To accomplish the aforementioned goals, we encoded structural knowledge from training data in probabilistic boosting trees and used it to detect efficiently the spinal canal, intervertebral disks, and three reference regions responsible for initializing the landmarking and labeling. Final landmarks and labels are selected by Markov Random Field-based matches of newly introduced 3-disk models. The framework has been tested on 36 CT images having at least one of the regions around the thoracic first ribs, the thoracic twelfth ribs, or the sacrum. In an average time of 2 min, we achieved a correct labeling in 35 cases with precision of 99.0% and recall of 97.2%. Additionally, we present results assuming none of the three reference regions could be detected.

journal_name

Med Image Anal

journal_title

Medical image analysis

authors

Major D,Hladůvka J,Schulze F,Bühler K

doi

10.1016/j.media.2013.07.005

subject

Has Abstract

pub_date

2013-12-01 00:00:00

pages

1151-63

issue

8

eissn

1361-8415

issn

1361-8423

pii

S1361-8415(13)00112-6

journal_volume

17

pub_type

杂志文章
  • Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties.

    abstract::In this paper, we present a framework to estimate local ventricular myocardium contractility using clinical MRI, a heart model and data assimilation. First, we build a generic anatomical model of the ventricles including muscle fibre orientations and anatomical subdivisions. Then, this model is deformed to fit a clini...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.04.002

    authors: Sermesant M,Moireau P,Camara O,Sainte-Marie J,Andriantsimiavona R,Cimrman R,Hill DL,Chapelle D,Razavi R

    更新日期:2006-08-01 00:00:00

  • Dynamically constructed network with error correction for accurate ventricle volume estimation.

    abstract::Automated ventricle volume estimation (AVVE) on cardiac magnetic resonance (CMR) images is very important for clinical cardiac disease diagnosis. However, current AVVE methods ignore the error correction for the estimated volume. This results in clinically intolerable ventricle volume estimation error and further lead...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101723

    authors: Luo G,Wang W,Tam C,Wang K,Cao S,Zhang H,Chen B,Li S

    更新日期:2020-08-01 00:00:00

  • LinSEM: Linearizing segmentation evaluation metrics for medical images.

    abstract::Numerous algorithms are available for segmenting medical images. Empirical discrepancy metrics are commonly used in measuring the similarity or difference between segmentations by algorithms and "true" segmentations. However, one issue with the commonly used metrics is that the same metric value often represents diffe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2019.101601

    authors: Li J,Udupa JK,Tong Y,Wang L,Torigian DA

    更新日期:2020-02-01 00:00:00

  • Intensity inhomogeneity correction of SD-OCT data using macular flatspace.

    abstract::Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisit...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2017.09.008

    authors: Lang A,Carass A,Jedynak BM,Solomon SD,Calabresi PA,Prince JL

    更新日期:2018-01-01 00:00:00

  • Towards model-based analysis of cardiac MR tagging data: relation between left ventricular shear strain and myofiber orientation.

    abstract::Many cardiac pathologies are reflected in abnormal myocardial deformation, accessible through magnetic resonance tagging (MRT). Interpretation of the MRT data is difficult, since the relation between pathology and deformation is not straightforward. Mathematical models of cardiac mechanics could be used to translate m...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2006.04.001

    authors: Ubbink SW,Bovendeerd PH,Delhaas T,Arts T,van de Vosse FN

    更新日期:2006-08-01 00:00:00

  • Segmentation of carpal bones from CT images using skeletally coupled deformable models.

    abstract::The in vivo investigation of joint kinematics in normal and injured wrist requires the segmentation of carpal bones from 3D (CT) images, and their registration over time. The non-uniformity of bone tissue, ranging from dense cortical bone to textured spongy bone, the irregular shape of closely packed carpal bones, sma...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00065-8

    authors: Sebastian TB,Tek H,Crisco JJ,Kimia BB

    更新日期:2003-03-01 00:00:00

  • Exudate detection in color retinal images for mass screening of diabetic retinopathy.

    abstract::The automatic detection of exudates in color eye fundus images is an important task in applications such as diabetic retinopathy screening. The presented work has been undertaken in the framework of the TeleOphta project, whose main objective is to automatically detect normal exams in a tele-ophthalmology network, thu...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.05.004

    authors: Zhang X,Thibault G,Decencière E,Marcotegui B,Laÿ B,Danno R,Cazuguel G,Quellec G,Lamard M,Massin P,Chabouis A,Victor Z,Erginay A

    更新日期:2014-10-01 00:00:00

  • Hierarchical performance estimation in the statistical label fusion framework.

    abstract::Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally - ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.005

    authors: Asman AJ,Landman BA

    更新日期:2014-10-01 00:00:00

  • Symmetric positive semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD).

    abstract::A novel method for estimating a field of fiber orientation distribution (FOD) based on signal de-convolution from a given set of diffusion weighted magnetic resonance (DW-MR) images is presented. We model the FOD by higher order Cartesian tensor basis using a parametrization that explicitly enforces the positive semi-...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.07.002

    authors: Weldeselassie YT,Barmpoutis A,Atkins MS

    更新日期:2012-08-01 00:00:00

  • Intensity non-uniformity correction in MRI: existing methods and their validation.

    abstract::Magnetic resonance imaging is a popular and powerful non-invasive imaging technique. Automated analysis has become mandatory to efficiently cope with the large amount of data generated using this modality. However, several artifacts, such as intensity non-uniformity, can degrade the quality of acquired data. Intensity...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2005.09.004

    authors: Belaroussi B,Milles J,Carme S,Zhu YM,Benoit-Cattin H

    更新日期:2006-04-01 00:00:00

  • An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.

    abstract::In-silico continuum simulations of organ and tissue scale physiology often require a discretisation or mesh of the solution domain. Cubic Hermite meshes provide a smooth representation of anatomy that is well-suited for simulating large deformation mechanics. Models of organ mechanics and deformation have demonstrated...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.06.010

    authors: Lamata P,Niederer S,Nordsletten D,Barber DC,Roy I,Hose DR,Smith N

    更新日期:2011-12-01 00:00:00

  • A comprehensive study of stent visualization enhancement in X-ray images by image processing means.

    abstract::In this work we propose a comprehensive study of Digital Stent Enhancement (DSE), from the analysis of the requirements to the validation of the proposed solution. First, we derive the stent visualization requirements in the context of the clinical application and workflow. Then, we propose a DSE algorithm combining a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2011.03.002

    authors: Bismuth V,Vaillant R,Funck F,Guillard N,Najman L

    更新日期:2011-08-01 00:00:00

  • Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways.

    abstract::Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles genera...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.02.008

    authors: Ugurlu D,Firat Z,Türe U,Unal G

    更新日期:2018-05-01 00:00:00

  • Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge.

    abstract::A number of algorithms for brain segmentation in preterm born infants have been published, but a reliable comparison of their performance is lacking. The NeoBrainS12 study (http://neobrains12.isi.uu.nl), providing three different image sets of preterm born infants, was set up to provide such a comparison. These sets a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.11.001

    authors: Išgum I,Benders MJ,Avants B,Cardoso MJ,Counsell SJ,Gomez EF,Gui L,Hűppi PS,Kersbergen KJ,Makropoulos A,Melbourne A,Moeskops P,Mol CP,Kuklisova-Murgasova M,Rueckert D,Schnabel JA,Srhoj-Egekher V,Wu J,Wang S,de Vries

    更新日期:2015-02-01 00:00:00

  • CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation.

    abstract::Segmentation of abdominal organs has been a comprehensive, yet unresolved, research field for many years. In the last decade, intensive developments in deep learning (DL) introduced new state-of-the-art segmentation systems. Despite outperforming the overall accuracy of existing systems, the effects of DL model proper...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101950

    authors: Kavur AE,Gezer NS,Barış M,Aslan S,Conze PH,Groza V,Pham DD,Chatterjee S,Ernst P,Özkan S,Baydar B,Lachinov D,Han S,Pauli J,Isensee F,Perkonigg M,Sathish R,Rajan R,Sheet D,Dovletov G,Speck O,Nürnberger A,Maier-H

    更新日期:2020-12-25 00:00:00

  • Identifying Cross-individual Correspondences of 3-hinge Gyri.

    abstract::Human brain alignment based on imaging data has long been an intriguing research topic. One of the challenges is the huge inter-individual variabilities, which are pronounced not only in cortical folding patterns, but also in the underlying structural and functional patterns. Also, it is still not fully understood how...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101700

    authors: Zhang T,Huang Y,Zhao L,He Z,Jiang X,Guo L,Hu X,Liu T

    更新日期:2020-07-01 00:00:00

  • Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis.

    abstract::Due to the development of deep learning, an increasing number of research works have been proposed to establish automated analysis systems for 3D volumetric medical data to improve the quality of patient care. However, it is challenging to obtain a large number of annotated 3D medical data needed to train a neural net...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101746

    authors: Zhu J,Li Y,Hu Y,Ma K,Zhou SK,Zheng Y

    更新日期:2020-08-01 00:00:00

  • Fusion of white and gray matter geometry: a framework for investigating brain development.

    abstract::Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.06.013

    authors: Savadjiev P,Rathi Y,Bouix S,Smith AR,Schultz RT,Verma R,Westin CF

    更新日期:2014-12-01 00:00:00

  • Deformable organisms for automatic medical image analysis.

    abstract::We introduce a new approach to medical image analysis that combines deformable model methodologies with concepts from the field of artificial life. In particular, we propose "deformable organisms", autonomous agents whose task is the automatic segmentation, labeling, and quantitative analysis of anatomical structures ...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(02)00083-x

    authors: McInerney T,Hamarneh G,Shenton M,Terzopoulos D

    更新日期:2002-09-01 00:00:00

  • A symbolic environment for visualizing activated foci in functional neuroimaging datasets.

    abstract::This paper presents a symbolic visualization environment known as the Corner Cube environment, which was developed to facilitate rapid examination and comparison of activated foci defined by analyses of functional neuroimaging datasets. We have performed a comparative evaluation of this environment against maximum-int...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(98)80020-0

    authors: Rehm K,Lakshminaryan K,Frutiger S,Schaper KA,Sumners DW,Strother SC,Anderson JR,Rottenberg DA

    更新日期:1998-09-01 00:00:00

  • Spine detection in CT and MR using iterated marginal space learning.

    abstract::Examinations of the spinal column with both, Magnetic Resonance (MR) imaging and Computed Tomography (CT), often require a precise three-dimensional positioning, angulation and labeling of the spinal disks and the vertebrae. A fully automatic and robust approach is a prerequisite for an automated scan alignment as wel...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2012.09.007

    authors: Michael Kelm B,Wels M,Kevin Zhou S,Seifert S,Suehling M,Zheng Y,Comaniciu D

    更新日期:2013-12-01 00:00:00

  • Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.

    abstract::In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addres...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2014.02.006

    authors: Parisot S,Wells W 3rd,Chemouny S,Duffau H,Paragios N

    更新日期:2014-05-01 00:00:00

  • Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.

    abstract::Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.05.005

    authors: Wu H,Bailey C,Rasoulinejad P,Li S

    更新日期:2018-08-01 00:00:00

  • Computer aided diagnosis of thyroid nodules based on the devised small-datasets multi-view ensemble learning.

    abstract::With the development of deep learning, its application in diagnosis of benign and malignant thyroid nodules has been widely concerned. However, it is difficult to obtain medical images, resulting in insufficient number of data, which contradicts the large amount of data required for acquiring effective deep learning d...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101819

    authors: Chen Y,Li D,Zhang X,Jin J,Shen Y

    更新日期:2021-01-01 00:00:00

  • Dynamic MRI reconstruction with end-to-end motion-guided network.

    abstract::Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is informative and important to understand motion mechanisms of body regions. Modeling such information into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. Howe...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2020.101901

    authors: Huang Q,Xian Y,Yang D,Qu H,Yi J,Wu P,Metaxas DN

    更新日期:2021-02-01 00:00:00

  • Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation.

    abstract::As a common disease in the elderly, neural foramina stenosis (NFS) brings a significantly negative impact on the quality of life due to its symptoms including pain, disability, fall risk and depression. Accurate boundary delineation is essential to the clinical diagnosis and treatment of NFS. However, existing clinica...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2016.10.009

    authors: He X,Zhang H,Landis M,Sharma M,Warrington J,Li S

    更新日期:2017-02-01 00:00:00

  • Statistical shape models for 3D medical image segmentation: a review.

    abstract::Statistical shape models (SSMs) have by now been firmly established as a robust tool for segmentation of medical images. While 2D models have been in use since the early 1990 s, wide-spread utilization of three-dimensional models appeared only in recent years, primarily made possible by breakthroughs in automatic dete...

    journal_title:Medical image analysis

    pub_type: 杂志文章,评审

    doi:10.1016/j.media.2009.05.004

    authors: Heimann T,Meinzer HP

    更新日期:2009-08-01 00:00:00

  • SNR enhancement of highly-accelerated real-time cardiac MRI acquisitions based on non-local means algorithm.

    abstract::Real-time cardiac MRI appears as a promising technique to evaluate the mechanical function of the heart. However, ultra-fast MRI acquisitions come with an important signal-to-noise ratio (SNR) penalty, which drastically reduces the image quality. Hence, a real-time denoising approach would be desirable for SNR amelior...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2009.05.006

    authors: Naegel B,Cernicanu A,Hyacinthe JN,Tognolini M,Vallée JP

    更新日期:2009-08-01 00:00:00

  • Stochastic finite element framework for simultaneous estimation of cardiac kinematic functions and material parameters.

    abstract::A stochastic finite element framework is presented for the simultaneous estimation of the cardiac kinematic functions and material model parameters from periodic medical image sequences. While existing biomechanics studies of the myocardial material constitutive laws have assumed known tissue kinematic measurements, a...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/s1361-8415(03)00066-5

    authors: Shi P,Liu H

    更新日期:2003-12-01 00:00:00

  • Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks.

    abstract::Pixelwise segmentation of the left ventricular (LV) myocardium and the four cardiac chambers in 2-D steady state free precession (SSFP) cine sequences is an essential preprocessing step for a wide range of analyses. Variability in contrast, appearance, orientation, and placement of the heart between patients, clinical...

    journal_title:Medical image analysis

    pub_type: 杂志文章

    doi:10.1016/j.media.2018.05.008

    authors: Vigneault DM,Xie W,Ho CY,Bluemke DA,Noble JA

    更新日期:2018-08-01 00:00:00