Climate change and broadacre livestock production across southern Australia. 1. Impacts of climate change on pasture and livestock productivity, and on sustainable levels of profitability.

Abstract:

:Broadacre livestock production is a major but highly diverse component of agriculture in Australia that will be significantly exposed to predicted changes in climate over coming decades. We used the GRAZPLAN simulation models to assess the impacts of climate change under the SRES A2 scenario across southern Australia. Climate change impacts were examined across space (25 representative locations) and time (1970-99, 2030, 2050 and 2070 climate) for each of five livestock enterprises. Climate projection uncertainty was considered by analysing projections from four global circulation models (GCMs). Livestock production scenarios were compared at their profit-maximizing stocking rate, constrained to ensure that risks of soil erosion were acceptable. Impacts on net primary productivity (ANPP) varied widely between GCM projections; the average declines from historical climate were 9% in 2030, 7% in 2050 and 14% in 2070. Declines in ANPP were larger at lower-rainfall locations. Sensitivity of ANPP to changes in rainfall ranged from 0.4 to 1.7, to temperature increase from -0.15 to +0.07 °C(-1) and to CO2 increase from 0.11 to 0.32. At most locations the dry summer period lengthened, exacerbating the greater erosion risk due to lower ANPP. Transpiration efficiency of pastures increased by 6-25%, but the proportion of ANPP that could safely be consumed by livestock fell sharply so that operating profit (at constant prices) fell by an average of 27% in 2030, 32% in 2050 and 48% in 2070. This amplification of ANPP reductions into larger profitability declines is likely to generalize to other extensive livestock systems. Profit declines were most marked at drier locations, with operating losses expected at 9 of the 25 locations by 2070. Differences between livestock enterprises were smaller than differences between locations and dates. Future research into climate change impacts on Australian livestock production needs to emphasise the dry margin of the cereal-livestock zone.

journal_name

Glob Chang Biol

journal_title

Global change biology

authors

Moore AD,Ghahramani A

doi

10.1111/gcb.12150

subject

Has Abstract

pub_date

2013-05-01 00:00:00

pages

1440-55

issue

5

eissn

1354-1013

issn

1365-2486

journal_volume

19

pub_type

杂志文章
  • Disentangling how climate change can affect an aquatic food web by combining multiple experimental approaches.

    abstract::Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14717

    authors: Amundrud SL,Srivastava DS

    更新日期:2019-10-01 00:00:00

  • Annual temperature variation as a time machine to understand the effects of long-term climate change on a poleward range shift.

    abstract::Range shifts due to annual variation in temperature are more tractable than range shifts linked to decadal to century long temperature changes due to climate change, providing natural experiments to determine the mechanisms responsible for driving long-term distributional shifts. In this study we couple physiologicall...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14300

    authors: Crickenberger S,Wethey DS

    更新日期:2018-08-01 00:00:00

  • Gender specific patterns of carbon uptake and water use in a dominant riparian tree species exposed to a warming climate.

    abstract::Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patt...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12230

    authors: Hultine KR,Burtch KG,Ehleringer JR

    更新日期:2013-11-01 00:00:00

  • Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.

    abstract::The relationship between the timing of recurrent biological events and seasonal climatic patterns (i.e., phenology) is a crucial ecological process. Changes in phenology are increasingly linked to global climate change. However, current evidence of phenological responses to recent climate change is subjected to substa...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14423

    authors: Diovisalvi N,Odriozola M,Garcia de Souza J,Rojas Molina F,Fontanarrosa MS,Escaray R,Bustingorry J,Sanzano P,Grosman F,Zagarese H

    更新日期:2018-11-01 00:00:00

  • Points of view matter when assessing biodiversity vulnerability to environmental changes.

    abstract::We can expect different levels of vulnerability depending on the paradigm used to determine the mechanisms that will alter biodiversity under climate change. A multi-paradigm perspective is necessary to get the full picture of biodiversity vulnerability. This is a commentary on Kling et al., 26, 2798-2813. ...

    journal_title:Global change biology

    pub_type: 评论,杂志文章

    doi:10.1111/gcb.15054

    authors: Ordonez A

    更新日期:2020-05-01 00:00:00

  • Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    abstract::Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical ...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12335

    authors: Couce E,Ridgwell A,Hendy EJ

    更新日期:2013-12-01 00:00:00

  • Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange.

    abstract::Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2 ) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated wit...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14731

    authors: Fu Z,Stoy PC,Poulter B,Gerken T,Zhang Z,Wakbulcho G,Niu S

    更新日期:2019-10-01 00:00:00

  • Advancing frost dates have reduced frost risk among most North American angiosperms since 1980.

    abstract::In recent decades, the final frost dates of winter have advanced throughout North America, and many angiosperm taxa have simultaneously advanced their flowering times as the climate has warmed. Phenological advancement may reduce plant fitness, as flowering prior to the final frost date of the winter/spring transition...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15380

    authors: Park IW,Ramirez-Parada T,Mazer SJ

    更新日期:2021-01-01 00:00:00

  • Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem.

    abstract::Improving nitrogen (N) management for greater agricultural output while minimizing unintended environmental consequences is critical in the endeavor of feeding the growing population sustainably amid climate change. Enhanced-efficiency fertilizers (EEFs) have been developed to better synchronize fertilizer N release w...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13918

    authors: Li T,Zhang W,Yin J,Chadwick D,Norse D,Lu Y,Liu X,Chen X,Zhang F,Powlson D,Dou Z

    更新日期:2018-02-01 00:00:00

  • How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change.

    abstract::Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community compositi...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13847

    authors: Liang Y,Duveneck MJ,Gustafson EJ,Serra-Diaz JM,Thompson JR

    更新日期:2018-01-01 00:00:00

  • Nitrogen cycling microbiomes are structured by plant mycorrhizal associations with consequences for nitrogen oxide fluxes in forests.

    abstract::Volatile nitrogen oxides (N2 O, NO, NO2 , HONO, …) can negatively impact climate, air quality, and human health. Using soils collected from temperate forests across the eastern United States, we show microbial communities involved in nitrogen (N) cycling are structured, in large part, by the composition of overstory t...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15439

    authors: Mushinski RM,Payne ZC,Raff JD,Craig ME,Pusede SE,Rusch DB,White JR,Phillips RP

    更新日期:2020-12-15 00:00:00

  • Multiple axes of ecological vulnerability to climate change.

    abstract::Observed ecological responses to climate change are highly individualistic across species and locations, and understanding the drivers of this variability is essential for management and conservation efforts. While it is clear that differences in exposure, sensitivity, and adaptive capacity all contribute to heterogen...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15008

    authors: Kling MM,Auer SL,Comer PJ,Ackerly DD,Hamilton H

    更新日期:2020-05-01 00:00:00

  • Current rice models underestimate yield losses from short-term heat stresses.

    abstract::Crop production will likely face enormous challenges against the occurrences of extreme climatic events projected under future climate change. Heat waves that occur at critical stages of the reproductive phase have detrimental impacts on the grain yield formation of rice (Oryza sativa). Accurate estimates of these imp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15393

    authors: Sun T,Hasegawa T,Liu B,Tang L,Liu L,Cao W,Zhu Y

    更新日期:2021-01-01 00:00:00

  • Patterns of land use, extensification, and intensification of Brazilian agriculture.

    abstract::Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of ...

    journal_title:Global change biology

    pub_type: 杂志文章,评审

    doi:10.1111/gcb.13314

    authors: Dias LC,Pimenta FM,Santos AB,Costa MH,Ladle RJ

    更新日期:2016-08-01 00:00:00

  • Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures.

    abstract::Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in no...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12455

    authors: Rummer JL,Couturier CS,Stecyk JA,Gardiner NM,Kinch JP,Nilsson GE,Munday PL

    更新日期:2014-04-01 00:00:00

  • An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change.

    abstract::Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assump...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15316

    authors: Tagliabue A,Barrier N,Du Pontavice H,Kwiatkowski L,Aumont O,Bopp L,Cheung WWL,Gascuel D,Maury O

    更新日期:2020-09-24 00:00:00

  • Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    abstract::Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, month...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13418

    authors: Rousk K,Michelsen A

    更新日期:2017-04-01 00:00:00

  • Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco.

    abstract::Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexp...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15418

    authors: Romero-Muñoz A,Fandos G,Benítez-López A,Kuemmerle T

    更新日期:2021-02-01 00:00:00

  • Modeling optimal responses and fitness consequences in a changing Arctic.

    abstract::Animals must balance a series of costs and benefits while trying to maximize their fitness. For example, an individual may need to choose how much energy to allocate to reproduction versus growth, or how much time to spend on vigilance versus foraging. Their decisions depend on complex interactions between environment...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14681

    authors: Reimer JR,Mangel M,Derocher AE,Lewis MA

    更新日期:2019-10-01 00:00:00

  • Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole-city footprint.

    abstract::Global urbanization trends impose major alterations on surface waters. This includes impacts on ecosystem functioning that can involve feedbacks on climate through changes in rates of greenhouse gas emissions. The combination of high nutrient supply and shallow depth typical of urban freshwaters is particularly conduc...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14799

    authors: Herrero Ortega S,Romero González-Quijano C,Casper P,Singer GA,Gessner MO

    更新日期:2019-12-01 00:00:00

  • Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris.

    abstract::Both elevated ozone (O(3)) and limiting soil nitrogen (N) availability negatively affect crop performance. However, less is known about how the combination of elevated O(3) and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O(3) at two N leve...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12237

    authors: Yendrek CR,Leisner CP,Ainsworth EA

    更新日期:2013-10-01 00:00:00

  • Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada.

    abstract::Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has be...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13855

    authors: Chen L,Huang JG,Dawson A,Zhai L,Stadt KJ,Comeau PG,Whitehouse C

    更新日期:2018-02-01 00:00:00

  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.

    abstract::The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net prim...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12187

    authors: Piao S,Sitch S,Ciais P,Friedlingstein P,Peylin P,Wang X,Ahlström A,Anav A,Canadell JG,Cong N,Huntingford C,Jung M,Levis S,Levy PE,Li J,Lin X,Lomas MR,Lu M,Luo Y,Ma Y,Myneni RB,Poulter B,Sun Z,Wang T,Viovy

    更新日期:2013-07-01 00:00:00

  • Moisture-induced greening of the South Asia over the past three decades.

    abstract::South Asia experienced a weakening of summer monsoon circulation in the past several decades, resulting in rainfall decline in wet regions. In comparison with other tropical ecosystems, quantitative assessments of the extent and triggers of vegetation change are lacking in assessing climate-change impacts over South A...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13762

    authors: Wang X,Wang T,Liu D,Guo H,Huang H,Zhao Y

    更新日期:2017-11-01 00:00:00

  • Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?

    abstract::Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown incons...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.12082

    authors: Verburg PS,Young AC,Stevenson BA,Glanzmann I,Arnone JA 3rd,Marion GM,Holmes C,Nowak RS

    更新日期:2013-03-01 00:00:00

  • Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens.

    abstract::Globally, Phytophthora cinnamomi is listed as one of the 100 worst invasive alien species and active management is required to reduce impact and prevent spread in both horticulture and natural ecosystems. Conversely, there are regions thought to be suitable for the pathogen where no disease is observed. We developed a...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13492

    authors: Burgess TI,Scott JK,Mcdougall KL,Stukely MJ,Crane C,Dunstan WA,Brigg F,Andjic V,White D,Rudman T,Arentz F,Ota N,Hardy GE

    更新日期:2017-04-01 00:00:00

  • The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    abstract::The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.13257

    authors: Ding J,Li F,Yang G,Chen L,Zhang B,Liu L,Fang K,Qin S,Chen Y,Peng Y,Ji C,He H,Smith P,Yang Y

    更新日期:2016-08-01 00:00:00

  • Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada.

    abstract::Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand ty...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.14641

    authors: Day NJ,Dunfield KE,Johnstone JF,Mack MC,Turetsky MR,Walker XJ,White AL,Baltzer JL

    更新日期:2019-07-01 00:00:00

  • The role of ungulates in nowadays temperate forests. A response to Fløjgaard et al. (DOI:10.1111/gcb.14029).

    abstract::In Boulanger et al. (2018), we investigated the effects of ungulates on forest plant diversity. By suggesting a revisit of our conclusions regarding ecosystem dynamics since the late Pleistocene, Fløjgaard et al. (2018) came to the conclusion that moderate grazing in forest should be a conservation target. Since major...

    journal_title:Global change biology

    pub_type: 评论,信件

    doi:10.1111/gcb.14122

    authors: Boulanger V,Dupouey JL,Archaux F,Badeau V,Baltzinger C,Chevalier R,Corcket E,Dumas Y,Forgeard F,Mårell A,Montpied P,Paillet Y,Saïd S,Ulrich E

    更新日期:2018-06-01 00:00:00

  • Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover.

    abstract::Microbial-derived nitrogen (N) is now recognized as an important source of soil organic N. However, the mechanisms that govern the production of microbial necromass N, its turnover, and stabilization in soil remain poorly understood. To assess the effects of elevated temperature on bacterial and fungal necromass N pro...

    journal_title:Global change biology

    pub_type: 杂志文章

    doi:10.1111/gcb.15206

    authors: Wang X,Wang C,Cotrufo MF,Sun L,Jiang P,Liu Z,Bai E

    更新日期:2020-09-01 00:00:00