Metal binding at the Deinococcus radiodurans Dps-1 N-terminal metal site controls dodecameric assembly and DNA binding.

Abstract:

:The prokaryotic DNA protection during starvation (Dps) proteins typically protect macromolecules against damaging agents via physical association with DNA and by oxidizing and sequestering iron. However, Deinococcus radiodurans Dps-1, which binds DNA with high affinity, fails to protect DNA against hydroxyl radicals due to iron leakage from the core, raising the question of how (•)OH-mediated damage to Dps-1-bound DNA is avoided. As shown here, Mn(II) inhibits ferroxidase activity, suggesting that ferroxidation may be prevented in vivo as D. radiodurans accumulates a high ratio of Mn:Fe. Dps-1 has an N-terminal extension with a unique metal-binding site, an extension that has been proposed to be important for DNA binding and dodecameric assembly. Electrophoretic mobility shift assays show that Mn(II) restores DNA binding to bipyridyl-treated Dps-1, whereas Fe(II) fails to do so in the presence of H(2)O(2), thus preventing DNA binding under conditions of ongoing ferroxidase activity. We also show that disruption of the N-terminal metal site leads to a significant reduction in DNA binding and to compromised oligomeric assembly, with the mutant protein assembling into a hexamer in the presence of divalent metal. We propose that securing the N-terminal loop by metal binding is required to initiate dodecameric assembly by contacting the neighboring dimer and that the absence of such optimal contacts results in formation of a hexameric assembly intermediate in which three dimers associate about one of the 3-fold axes. Once dodecameric Dps-1 is assembled, metal binding no longer affects oligomeric state; instead, differential metal binding controls DNA interaction under conditions of oxidative stress.

journal_name

Biochemistry

journal_title

Biochemistry

authors

Nguyen KH,Grove A

doi

10.1021/bi300703x

subject

Has Abstract

pub_date

2012-08-21 00:00:00

pages

6679-89

issue

33

eissn

0006-2960

issn

1520-4995

journal_volume

51

pub_type

杂志文章