Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C.

Abstract:

:The abnormal isoform of the scrapie prion protein PrPSc is both a host-derived protein and a component of the infectious agent causing scrapie. PrPSc and the normal cellular isoform PrPC have different physical properties that apparently arise from a posttranslational event. Both PrP isoforms are covalently modified at the carboxy terminus by a glycoinositol phospholipid. Using preparations of dissociated cells derived from normal and scrapie-infected hamster brain tissue, we find that the majority of PrPC is released from membranes by phosphatidylinositol-specific phospholipase C (PIPLC), while PrPSc is resistant to release. In contrast, purified denatured PrP 27-30 (which is formed from PrPSc during purification by proteolysis of the amino terminus) is completely cleaved by PIPLC. Incubation of the cell preparations with proteinase K cleaves PrPSc to form PrP 27-30, demonstrating that PrPSc is accessible to added enzymes. We have also developed a protocol involving biotinylation that gives a quantitative estimate of the fraction of a protein exposed to the cell exterior. Using this strategy, we find that a large portion of PrPSc in the cell preparations reacts with a membrane-impermeant biotinylation reagent. Whether alternative membrane anchoring of PrPSc, inaccessibility of the glycoinositol phospholipid anchor to PIPLC, or binding to another cellular component is responsible for the differential release of prion proteins from cells remains to be determined.

journal_name

Biochemistry

journal_title

Biochemistry

authors

Stahl N,Borchelt DR,Prusiner SB

doi

10.1021/bi00474a028

subject

Has Abstract

pub_date

1990-06-05 00:00:00

pages

5405-12

issue

22

eissn

0006-2960

issn

1520-4995

journal_volume

29

pub_type

杂志文章