Noise-induced transitions in slow wave neuronal dynamics.

Abstract:

:Many neuronal systems exhibit slow random alternations and sudden switches in activity states. Models with noisy relaxation dynamics (oscillatory, excitable or bistable) account for these temporal, slow wave, patterns and the fluctuations within states. The noise-induced transitions in a relaxation dynamics are analogous to escape by a particle in a slowly changing double-well potential. In this formalism, we obtain semi-analytically the first and second order statistical properties: the distributions of the slow process at the transitions and the temporal correlations of successive switching events. We find that the temporal correlations can be used to help distinguish among biophysical mechanisms for the slow negative feedback, such as divisive or subtractive. We develop our results in the context of models for cellular pacemaker neurons; they also apply to mean-field models for spontaneously active networks with slow wave dynamics.

journal_name

J Comput Neurosci

authors

Lim S,Rinzel J

doi

10.1007/s10827-009-0178-y

subject

Has Abstract

pub_date

2010-02-01 00:00:00

pages

1-17

issue

1

eissn

0929-5313

issn

1573-6873

journal_volume

28

pub_type

杂志文章
  • Signal propagation in feedforward neuronal networks with unreliable synapses.

    abstract::In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-010-0279-7

    authors: Guo D,Li C

    更新日期:2011-06-01 00:00:00

  • On the stationary state of a network of inhibitory spiking neurons.

    abstract::The background activity of a cortical neural network is modeled by a homogeneous integrate-and-fire network with unreliable inhibitory synapses. For the case of fast synapses, numerical and analytical calculations show that the network relaxes into a stationary state of high attention. The majority of the neurons has ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-007-0049-3

    authors: Kinzel W

    更新日期:2008-02-01 00:00:00

  • Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons.

    abstract::Computational modeling of dendritic morphology is a powerful tool for quantitatively describing complex geometrical relationships, uncovering principles of dendritic development, and synthesizing virtual neurons to systematically investigate cellular biophysics and network dynamics. A feature common to many morphologi...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-005-1850-5

    authors: Donohue DE,Ascoli GA

    更新日期:2005-10-01 00:00:00

  • Reduced order models of myelinated axonal compartments.

    abstract::The paper presents a hierarchical series of computational models for myelinated axonal compartments. Three classes of models are considered, either with distributed parameters (2.5D EQS-ElectroQuasi Static, 1D TL-Transmission Lines) or with lumped parameters (0D). They are systematically analyzed with both analytical ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-019-00726-4

    authors: Ioan D,Bărbulescu R,Silveira LM,Ciuprina G

    更新日期:2019-12-01 00:00:00

  • Linear-nonlinear-time-warp-poisson models of neural activity.

    abstract::Prominent models of spike trains assume only one source of variability - stochastic (Poisson) spiking - when stimuli and behavior are fixed. However, spike trains may also reflect variability due to internal processes such as planning. For example, we can plan a movement at one point in time and execute it at some arb...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-018-0696-6

    authors: Lawlor PN,Perich MG,Miller LE,Kording KP

    更新日期:2018-12-01 00:00:00

  • Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect.

    abstract::In inactive stick insects, sensory information from the femoral chordotonal organ (fCO) about position and movement of the femur-tibia joint is transferred via local nonspiking interneurons onto extensor and flexor tibiae motoneurons. Information is processed by the interaction of antagonistic parallel pathways at two...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/BF00161131

    authors: Sauer AE,Driesang RB,Büschges A,Bässler U

    更新日期:1996-09-01 00:00:00

  • Integrating top-down and bottom-up sensory processing by somato-dendritic interactions.

    abstract::The classical view of cortical information processing is that of a bottom-up process in a feedforward hierarchy. However, psychophysical, anatomical, and physiological evidence suggests that top-down effects play a crucial role in the processing of input stimuli. Not much is known about the neural mechanisms underlyin...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008973215925

    authors: Siegel M,Körding KP,König P

    更新日期:2000-03-01 00:00:00

  • Parallel linear dynamic models can mimic the McGurk effect in clinical populations.

    abstract::One of the most common examples of audiovisual speech integration is the McGurk effect. As an example, an auditory syllable /ba/ recorded over incongruent lip movements that produce "ga" typically causes listeners to hear "da". This report hypothesizes reasons why certain clinical and listeners who are hard of hearing...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-016-0610-z

    authors: Altieri N,Yang CT

    更新日期:2016-10-01 00:00:00

  • Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model.

    abstract::Many mechanisms of neural processing rely critically upon the synaptic connectivity between neurons. As our ability to simultaneously record from large populations of neurons expands, the ability to infer network connectivity from this data has become a major goal of computational neuroscience. To address this issue, ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0443-y

    authors: Kobayashi R,Kitano K

    更新日期:2013-08-01 00:00:00

  • Firing-rate models capture essential response dynamics of LGN relay cells.

    abstract::Firing-rate models provide a practical tool for studying signal processing in the early visual system, permitting more thorough mathematical analysis than spike-based models. We show here that essential response properties of relay cells in the lateral geniculate nucleus (LGN) can be captured by surprisingly simple fi...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0456-6

    authors: Heiberg T,Kriener B,Tetzlaff T,Casti A,Einevoll GT,Plesser HE

    更新日期:2013-12-01 00:00:00

  • A continuous attractor network model without recurrent excitation: maintenance and integration in the head direction cell system.

    abstract::Motivated by experimental observations of the head direction system, we study a three population network model that operates as a continuous attractor network. This network is able to store in a short-term memory an angular variable (the head direction) as a spatial profile of activity across neurons in the absence of...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-005-6559-y

    authors: Boucheny C,Brunel N,Arleo A

    更新日期:2005-03-01 00:00:00

  • Visual responses of crayfish ocular motoneurons: an information theoretical analysis.

    abstract::Motoneuron responses were elicited by global visual motion and stepwise displacements of an illuminated stripe. Stimulus protocols were identical to those used in previous behavioral studies of compensatory eyestalk reflexes. The firing rates and directional selectivity of the motoneuron responses were measured with r...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1025873027017

    authors: Miller CS,Johnson DH,Schroeter JP,Myint L,Glantz RM

    更新日期:2003-09-01 00:00:00

  • Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations.

    abstract::It is widely believed that the theta rhythm in the hippocampus is caused by the rhythmic input from the medial septum-diagonal band of Broca (MSDB). The main MSDB output is formed by GABAergic projection neurons which are divided into two subpopulations and fire at different phases of the hippocampal theta rhythm. The...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-015-0564-6

    authors: Mysin IE,Kitchigina VF,Kazanovich Y

    更新日期:2015-08-01 00:00:00

  • Models of calmodulin trapping and CaM kinase II activation in a dendritic spine.

    abstract::Activation of calcium/calmodulin-dependent protein kinase II (CaMKII) by calmodulin following calcium entry into the cell is important for long-term potentiation (LTP). Here a model of calmodulin binding and trapping by CaMKII in a dendritic spine was used to estimate levels and durations of CaMKII activation followin...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1008969032563

    authors: Holmes WR

    更新日期:2000-01-01 00:00:00

  • Spatiotemporal maps of CaMKII in dendritic spines.

    abstract::The calcium calmodulin dependent kinase (CaMKII) is important for long-term potentiation at dendritic spines. Photo-activatable GFP (PaGFP) - CaMKII fusions were used to map CaMKII movements between and within spines in dissociated hippocampal neurons. Photo-activated PaGFP (GFP*) generated in the shaft spread uniform...

    journal_title:Journal of computational neuroscience

    pub_type: 历史文章,杂志文章

    doi:10.1007/s10827-011-0377-1

    authors: Khan S,Reese TS,Rajpoot N,Shabbir A

    更新日期:2012-08-01 00:00:00

  • Spiking neural network simulation: numerical integration with the Parker-Sochacki method.

    abstract::Mathematical neuronal models are normally expressed using differential equations. The Parker-Sochacki method is a new technique for the numerical integration of differential equations applicable to many neuronal models. Using this method, the solution order can be adapted according to the local conditions at each time...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0131-5

    authors: Stewart RD,Bair W

    更新日期:2009-08-01 00:00:00

  • Noise and the PSTH response to current transients: I. General theory and application to the integrate-and-fire neuron.

    abstract::An analytical model is proposed that can predict the shape of the poststimulus time histogram (PSTH) response to a current pulse of a neuron subjected to uncorrelated background input. The model is based on an explicit description of noise in the form of an escape rate and corresponding hazard function. Two forms of t...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1012841516004

    authors: Herrmann A,Gerstner W

    更新日期:2001-09-01 00:00:00

  • Analyzing multiple spike trains with nonparametric Granger causality.

    abstract::Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0126-2

    authors: Nedungadi AG,Rangarajan G,Jain N,Ding M

    更新日期:2009-08-01 00:00:00

  • Hot coffee: associative memory with bump attractor cell assemblies of spiking neurons.

    abstract::Networks of spiking neurons can have persistently firing stable bump attractors to represent continuous spaces (like temperature). This can be done with a topology with local excitatory synapses and local surround inhibitory synapses. Activating large ranges in the attractor can lead to multiple bumps, that show repel...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-020-00758-1

    authors: Huyck CR,Vergani AA

    更新日期:2020-08-01 00:00:00

  • Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation.

    abstract::Deep brain stimulation (DBS) of the subthlamic nucleus (STN) represents an effective treatment for medically refractory Parkinson's disease; however, understanding of its effects on basal ganglia network activity remains limited. We constructed a computational model of the subthalamopallidal network, trained it to fit...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-010-0225-8

    authors: Hahn PJ,McIntyre CC

    更新日期:2010-06-01 00:00:00

  • Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents.

    abstract::Many neuron types exhibit preferred frequency responses in their voltage amplitude (resonance) or phase shift to subthreshold oscillatory currents, but the effect of biophysical parameters on these properties is not well understood. We propose a general framework to analyze the role of different ionic currents and the...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0483-3

    authors: Rotstein HG,Nadim F

    更新日期:2014-08-01 00:00:00

  • A neural mass model based on single cell dynamics to model pathophysiology.

    abstract::Neural mass models are successful in modeling brain rhythms as observed in macroscopic measurements such as the electroencephalogram (EEG). While the synaptic current is explicitly modeled in current models, the single cell electrophysiology is not taken into account. To allow for investigations of the effects of chan...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0517-5

    authors: Zandt BJ,Visser S,van Putten MJ,Ten Haken B

    更新日期:2014-12-01 00:00:00

  • No parallel fiber volleys in the cerebellar cortex: evidence from cross-correlation analysis between Purkinje cells in a computer model and in recordings from anesthetized rats.

    abstract::Purkinje cells aligned on the medio-lateral axis share a large proportion of their approximately 175,000 parallel fiber inputs. This arrangement has led to the hypothesis that movement timing is coded in the cerebellum by beams of synchronously active parallel fibers. In computer simulations I show that such synchrono...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1023217111784

    authors: Jaeger D

    更新日期:2003-05-01 00:00:00

  • Open loop optogenetic control of simulated cortical epileptiform activity.

    abstract::We present a model for the use of open loop optogenetic control to inhibit epileptiform activity in a meso scale model of the human cortex. The meso scale cortical model first developed by Liley et al. (2001) is extended to two dimensions and the nature of the seizure waves is studied. We adapt to the meso scale a 4 s...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-013-0484-2

    authors: Selvaraj P,Sleigh JW,Freeman WJ,Kirsch HE,Szeri AJ

    更新日期:2014-06-01 00:00:00

  • The cost of linearization.

    abstract::Linear additivity of synaptic input is a pervasive assumption in computational neuroscience, and previously Bernander et al. (Journal of Neurophysiology 72:2743-2753, 1994) point out that the sublinear additivity of a passive neuronal model can be linearized with voltage-dependent currents. Here we re-examine this per...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-009-0141-y

    authors: Morel D,Levy W

    更新日期:2009-10-01 00:00:00

  • Spiking neural circuits with dendritic stimulus processors : encoding, decoding, and identification in reproducing kernel Hilbert spaces.

    abstract::We present a multi-input multi-output neural circuit architecture for nonlinear processing and encoding of stimuli in the spike domain. In this architecture a bank of dendritic stimulus processors implements nonlinear transformations of multiple temporal or spatio-temporal signals such as spike trains or auditory and ...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0522-8

    authors: Lazar AA,Slutskiy YB

    更新日期:2015-02-01 00:00:00

  • A model-based approach for the analysis of neuronal information transmission in multi-input and -output systems.

    abstract::We present a new method to characterize multi-input and output neuronal systems using information theory. To obtain a lower bound of transinformation we take three steps: (1) Estimation of the deterministic response to isolate components carrying stimulus information. The deviation of the original response from the de...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1023/a:1016583328930

    authors: Eger M,Eckhorn R

    更新日期:2002-05-01 00:00:00

  • Effect of non-symmetric waveform on conduction block induced by high-frequency (kHz) biphasic stimulation in unmyelinated axon.

    abstract::The effect of a non-symmetric waveform on nerve conduction block induced by high-frequency biphasic stimulation is investigated using a lumped circuit model of the unmyelinated axon based on Hodgkin-Huxley equations. The simulation results reveal that the block threshold monotonically increases with the stimulation fr...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-014-0510-z

    authors: Zhao S,Yang G,Wang J,Roppolo JR,de Groat WC,Tai C

    更新日期:2014-10-01 00:00:00

  • Virtual Retina: a biological retina model and simulator, with contrast gain control.

    abstract::We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. The underl...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-008-0108-4

    authors: Wohrer A,Kornprobst P

    更新日期:2009-04-01 00:00:00

  • A minimum-error, energy-constrained neural code is an instantaneous-rate code.

    abstract::Sensory neurons code information about stimuli in their sequence of action potentials (spikes). Intuitively, the spikes should represent stimuli with high fidelity. However, generating and propagating spikes is a metabolically expensive process. It is therefore likely that neural codes have been selected to balance en...

    journal_title:Journal of computational neuroscience

    pub_type: 杂志文章

    doi:10.1007/s10827-016-0592-x

    authors: Johnson EC,Jones DL,Ratnam R

    更新日期:2016-04-01 00:00:00