Substrate specificity of homogeneous monkeypox virus uracil-DNA glycosylase.

Abstract:

:Weak or nonexistent smallpox immunity in today's human population raises concerns about the possibility of natural or provoked genetic modifications leading to re-emergence of variola virus and other poxviruses. Thus, the development of new antiviral strategies aimed at poxvirus infections in humans is a high priority. The DNA repair protein uracil-DNA glycosylase (UNG) is one of the viral enzymes important for poxvirus pathogenesis. Consequently, the inhibition of UNG is a rational therapeutic strategy for infections with poxviruses. Monkeypox virus, which occurs naturally in Africa, can cause a smallpox-like disease in humans. Here, the monkeypox virus UNG (mpUNG) is characterized and compared to vaccinia virus UNG (vUNG) and human UNG (hUNG). The mpUNG protein excises uracil preferentially from single-stranded DNA. Furthermore, mpUNG prefers the U.G pair over the U.A pair and does not excise oxidized bases. Both mpUNG and vUNG viral proteins are strongly inhibited by physiological concentrations of NaCl and MgCl2. Although the two viral DNA repair enzymes have similar substrate specificities, the kcat/KM values of mpUNG are higher than those of vUNG. The mpUNG protein was strongly inhibited by 5-azauracil and to a lesser extent by 4(6)-aminouracil and 5-halogenated uracil analogues, whereas uracil had no effect. To develop antiviral drugs toward mpUNG, we also validated a repair assay using the molecular beacons containing multiple uracil residues. Potential targets and strategies for combating pathogenic orthopoxviruses, including smallpox, are discussed.

journal_name

Biochemistry

journal_title

Biochemistry

authors

Duraffour S,Ishchenko AA,Saparbaev M,Crance JM,Garin D

doi

10.1021/bi700726a

subject

Has Abstract

pub_date

2007-10-23 00:00:00

pages

11874-81

issue

42

eissn

0006-2960

issn

1520-4995

journal_volume

46

pub_type

杂志文章