A cognitive blueprint of collaboration in context: distributed cognition in the psychiatric emergency department.

Abstract:

OBJECTIVE:The complex cognitive processes that underlie human performance in 'messy' contexts such as critical care medicine suggest a need for a cognitive model with broad scope to support the understanding of error in such domains. The objective of this research is to characterize the cognition that underlies patient care in the domain of emergency psychiatry in order to enhance the understanding of error in this context. METHODS AND MATERIALS:The theoretical framework of distributed cognition has been used to study collaborative decision-making in a number of similarly complex environments such as airline cockpits and air traffic control towers. These environments share certain characteristics with the critical care domain: the work is collaborative in nature, it is supported by artifacts that can be studied directly, and the consequences of error are dire. However, the nature of the work in this domain and the artifacts used to support it are unique. The application of the theoretical constructs of distributed cognition to this context is necessary in order to characterize the collective thinking that underlies critical care. Our research uses a combination of ethnographic and interview data to derive a distributed cognitive model of the psychiatric emergency department (PED), a high volume clinical unit dealing exclusively with the acute phases of psychiatric crises. The dynamics of workflow within the department are complex: several types of clinician collaborate by forming temporary multidisciplinary teams that attach to and manage particular patients. The component members of these teams change over time. RESULTS:Using the theoretical framework of distributed cognition, we interpreted the collected data to derive a cognitive model of the distribution of work and information flow in the PED. This modeling process has revealed several latent flaws in the system related to the underlying distribution of cognition across teams, time, space and artifacts. CONCLUSIONS:The characterization of this distribution has enhanced our understanding of the cognitive dynamics underlying error in this environment, and will serve to guide future research on error management in the ED and inform the development of context-appropriate error-management systems.

journal_name

Artif Intell Med

authors

Cohen T,Blatter B,Almeida C,Shortliffe E,Patel V

doi

10.1016/j.artmed.2006.03.009

subject

Has Abstract

pub_date

2006-06-01 00:00:00

pages

73-83

issue

2

eissn

0933-3657

issn

1873-2860

pii

S0933-3657(06)00060-1

journal_volume

37

pub_type

杂志文章
  • A spatio-temporal Bayesian network classifier for understanding visual field deterioration.

    abstract:OBJECTIVE:Progressive loss of the field of vision is characteristic of a number of eye diseases such as glaucoma which is a leading cause of irreversible blindness in the world. Recently, there has been an explosion in the amount of data being stored on patients who suffer from visual deterioration including field test...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2004.07.004

    authors: Tucker A,Vinciotti V,Liu X,Garway-Heath D

    更新日期:2005-06-01 00:00:00

  • Identifying the measurement noise in glaucomatous testing: an artificial neural network approach.

    abstract::Diagnosis of visual function losses in glaucomatous patients depends to a large extent on the analysis of the data collected from corresponding psychophysical tests. One of the main difficulties in obtaining reliable data from patients in these tests is the measurement noise caused by the learning effect, inattention,...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/0933-3657(94)90004-3

    authors: Liu X,Cheng G,Wu JX

    更新日期:1994-10-01 00:00:00

  • Identification of the optic nerve head with genetic algorithms.

    abstract:OBJECTIVE:This work proposes creating an automatic system to locate and segment the optic nerve head (ONH) in eye fundus photographic images using genetic algorithms. METHODS AND MATERIAL:Domain knowledge is used to create a set of heuristics that guide the various steps involved in the process. Initially, using an ey...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2008.04.005

    authors: Carmona EJ,Rincón M,García-Feijoó J,Martínez-de-la-Casa JM

    更新日期:2008-07-01 00:00:00

  • Medical dictionaries for patient encoding systems: a methodology.

    abstract::Medical language is highly compositional and makes extensive use of common roots, especially Latino-Greek roots. Besides words devoted to common sense, medical language presents some typical characteristics, especially on morphological and semantic aspects of word formation. Morphological decomposition and identificat...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/s0933-3657(98)00023-2

    authors: Lovis C,Baud R,Rassinoux AM,Michel PA,Scherrer JR

    更新日期:1998-09-01 00:00:00

  • Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach.

    abstract:OBJECTIVE:The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing int...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2006.08.005

    authors: Rinaldi F,Schneider G,Kaljurand K,Hess M,Andronis C,Konstandi O,Persidis A

    更新日期:2007-02-01 00:00:00

  • Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.

    abstract:OBJECTIVE:Suitable techniques for microarray analysis have been widely researched, particularly for the study of marker genes expressed to a specific type of cancer. Most of the machine learning methods that have been applied to significant gene selection focus on the classification ability rather than the selection ab...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2011.06.008

    authors: Tong DL,Schierz AC

    更新日期:2011-09-01 00:00:00

  • A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis.

    abstract:OBJECTIVE:Recently, fuzzy soft sets-based decision making has attracted more and more interest. Although plenty of works have been done, they cannot provide the uncertainty or certainty of their results. To manage uncertainty is one of the most important and toughest tasks of decision making especially in medicine. In ...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2016.04.004

    authors: Wang J,Hu Y,Xiao F,Deng X,Deng Y

    更新日期:2016-05-01 00:00:00

  • Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors.

    abstract:OBJECTIVE:We explore the link between dataset complexity, determining how difficult a dataset is for classification, and classification performance defined by low-variance and low-biased bolstered resubstitution error made by k-nearest neighbor classifiers. METHODS AND MATERIAL:Gene expression based cancer classificat...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2008.08.004

    authors: Okun O,Priisalu H

    更新日期:2009-02-01 00:00:00

  • ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network.

    abstract::Automatic arrhythmia detection based on electrocardiogram (ECG) is of great significance for early prevention and diagnosis of cardiac diseases. Recently, deep learning methods have been applied to arrhythmia detection and obtained great success. Among them, convolutional neural network (CNN) is an effective method fo...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2020.101856

    authors: Zhang J,Liu A,Gao M,Chen X,Zhang X,Chen X

    更新日期:2020-06-01 00:00:00

  • Bounded-depth threshold circuits for computer-assisted CT image classification.

    abstract::We present a stochastic algorithm that computes threshold circuits designed to discriminate between two classes of computed tomography (CT) images. The algorithm employs a partition of training examples into several classes according to the average grey scale value of images. For each class, a sub-circuit is computed,...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/s0933-3657(01)00101-4

    authors: Albrecht A,Hein E,Steinhöfel K,Taupitz M,Wong CK

    更新日期:2002-02-01 00:00:00

  • Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support.

    abstract:OBJECTIVE:Traditional Chinese medicine (TCM) is a scientific discipline, which develops the related theories from the long-term clinical practices. The large-scale clinical data are the core empirical knowledge source for TCM research. This paper introduces a clinical data warehouse (CDW) system, which incorporates the...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2009.07.012

    authors: Zhou X,Chen S,Liu B,Zhang R,Wang Y,Li P,Guo Y,Zhang H,Gao Z,Yan X

    更新日期:2010-02-01 00:00:00

  • A modular approach for representing and executing clinical guidelines.

    abstract::In this paper, we propose an approach for managing clinical guidelines. We outline a modular architecture, allowing us to separate two conceptually distinct aspects: the representation (and acquisition) of clinical guidelines and their execution. We propose an expressive formalism, which allows one to deal with the co...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章,评审

    doi:10.1016/s0933-3657(01)00087-2

    authors: Terenziani P,Molino G,Torchio M

    更新日期:2001-11-01 00:00:00

  • Case-based reasoning for medical decision support tasks: the Inreca approach.

    abstract::We describe an approach for developing knowledge-based medical decision support systems based on the new technology of case-based reasoning. This work is based on the results of the Inreca European project and preliminary results from the Inreca + project which mainly deals with medical applications. One goal was to s...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/s0933-3657(97)00038-9

    authors: Althoff KD,Bergmann R,Wess S,Manago M,Auriol E,Larichev OI,Bolotov A,Zhuravlev YI,Gurov SI

    更新日期:1998-01-01 00:00:00

  • Modeling and solving the dynamic patient admission scheduling problem under uncertainty.

    abstract:OBJECTIVE:Our goal is to propose and solve a new formulation of the recently-formalized patient admission scheduling problem, extending it by including several real-world features, such as the presence of emergency patients, uncertainty in the length of stay, and the possibility of delayed admissions. METHOD:We devise...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2012.09.001

    authors: Ceschia S,Schaerf A

    更新日期:2012-11-01 00:00:00

  • Detecting conserved coding genomic regions through signal processing of nucleotide substitution patterns.

    abstract:OBJECTIVE:In the last few years several complete genome sequences have been made available to the research community. The annotation of their complete inventory of protein coding genes, however, has been so far an elusive goal. Classical ab initio gene prediction methods have been of great support for this task, but sh...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2008.07.015

    authors: Ré M,Pavesi G

    更新日期:2009-02-01 00:00:00

  • Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques.

    abstract:OBJECTIVE:This work presents a system for a simultaneous non-invasive estimate of the blood glucose level (BGL) and the systolic (SBP) and diastolic (DBP) blood pressure, using a photoplethysmograph (PPG) and machine learning techniques. The method is independent of the person whose values are being measured and does n...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2011.05.001

    authors: Monte-Moreno E

    更新日期:2011-10-01 00:00:00

  • From an expert-driven paper guideline to a user-centred decision support system: a usability comparison study.

    abstract:OBJECTIVE:To assess whether a user-centred prototype clinical decision support system (CDSS) providing patient-specific advice better supports healthcare practitioners in terms of (a) types of usability problems detected and (b) effective and efficient retrieval of childhood cancer survivor's follow-up screening proced...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2013.04.004

    authors: Kilsdonk E,Peute LW,Riezebos RJ,Kremer LC,Jaspers MW

    更新日期:2013-09-01 00:00:00

  • Analyzing interactions on combining multiple clinical guidelines.

    abstract::Accounting for patients with multiple health conditions is a complex task that requires analysing potential interactions among recommendations meant to address each condition. Although some approaches have been proposed to address this issue, important features still require more investigation, such as (re)usability a...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2017.03.012

    authors: Zamborlini V,da Silveira M,Pruski C,Ten Teije A,Geleijn E,van der Leeden M,Stuiver M,van Harmelen F

    更新日期:2017-09-01 00:00:00

  • Classifying free-text triage chief complaints into syndromic categories with natural language processing.

    abstract:OBJECTIVE:Develop and evaluate a natural language processing application for classifying chief complaints into syndromic categories for syndromic surveillance. INTRODUCTION:Much of the input data for artificial intelligence applications in the medical field are free-text patient medical records, including dictated med...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2004.04.001

    authors: Chapman WW,Christensen LM,Wagner MM,Haug PJ,Ivanov O,Dowling JN,Olszewski RT

    更新日期:2005-01-01 00:00:00

  • Out of hours workload management: Bayesian inference for decision support in secondary care.

    abstract:OBJECTIVE:In this paper, we aim to evaluate the use of electronic technologies in out of hours (OoH) task-management for assisting the design of effective support systems in health care; targeting local facilities, wards or specific working groups. In addition, we seek to draw and validate conclusions with relevance to...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2016.09.005

    authors: Perez I,Brown M,Pinchin J,Martindale S,Sharples S,Shaw D,Blakey J

    更新日期:2016-10-01 00:00:00

  • Project INSIDE: towards autonomous semi-unstructured human-robot social interaction in autism therapy.

    abstract::This paper describes the INSIDE system, a networked robot system designed to allow the use of mobile robots as active players in the therapy of children with autism spectrum disorders (ASD). While a significant volume of work has explored the impact of robots in ASD therapy, most such work comprises remotely operated ...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2018.12.003

    authors: Melo FS,Sardinha A,Belo D,Couto M,Faria M,Farias A,Gambôa H,Jesus C,Kinarullathil M,Lima P,Luz L,Mateus A,Melo I,Moreno P,Osório D,Paiva A,Pimentel J,Rodrigues J,Sequeira P,Solera-Ureña R,Vasco M,Veloso M,Vent

    更新日期:2019-05-01 00:00:00

  • Pressure injury image analysis with machine learning techniques: A systematic review on previous and possible future methods.

    abstract::Pressure injuries represent a tremendous healthcare challenge in many nations. Elderly and disabled people are the most affected by this fast growing disease. Hence, an accurate diagnosis of pressure injuries is paramount for efficient treatment. The characteristics of these wounds are crucial indicators for the progr...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2019.101742

    authors: Zahia S,Garcia Zapirain MB,Sevillano X,González A,Kim PJ,Elmaghraby A

    更新日期:2020-01-01 00:00:00

  • Employing decomposable partially observable Markov decision processes to control gene regulatory networks.

    abstract:OBJECTIVE:Formulate the induction and control of gene regulatory networks (GRNs) from gene expression data using Partially Observable Markov Decision Processes (POMDPs). METHODS AND MATERIAL:Different approaches exist to model GRNs; they are mostly simulated as mathematical models that represent relationships between ...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2017.06.007

    authors: Erdogdu U,Polat F,Alhajj R

    更新日期:2017-11-01 00:00:00

  • HepatoConsult: a knowledge-based second opinion and documentation system.

    abstract::HepatoConsult is a publicly available knowledge-based second opinion and documentation system aiding in the diagnosis of liver diseases. The positive results of a prospective diagnostic evaluation study encouraged its use in clinical routine, although the available hardware infrastructure was not optimal. The comments...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/s0933-3657(01)00104-x

    authors: Buscher HP,Engler Ch,Führer A,Kirschke S,Puppe F

    更新日期:2002-03-01 00:00:00

  • Automatic classification of epilepsy types using ontology-based and genetics-based machine learning.

    abstract:OBJECTIVES:In the presurgical analysis for drug-resistant focal epilepsies, the definition of the epileptogenic zone, which is the cortical area where ictal discharges originate, is usually carried out by using clinical, electrophysiological and neuroimaging data analysis. Clinical evaluation is based on the visual det...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2014.03.001

    authors: Kassahun Y,Perrone R,De Momi E,Berghöfer E,Tassi L,Canevini MP,Spreafico R,Ferrigno G,Kirchner F

    更新日期:2014-06-01 00:00:00

  • An implicit approach to deal with periodically repeated medical data.

    abstract:CONTEXT:Temporal information plays a crucial role in medicine, so that in medical informatics there is an increasing awareness that suitable database approaches are needed to store and support it. Specifically, a great amount of clinical data (e.g., therapeutic data) are periodically repeated. Although an explicit trea...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2012.03.002

    authors: Stantic B,Terenziani P,Governatori G,Bottrighi A,Sattar A

    更新日期:2012-07-01 00:00:00

  • Multichannel mixture models for time-series analysis and classification of engagement with multiple health services: An application to psychology and physiotherapy utilization patterns after traffic accidents.

    abstract:BACKGROUND:Motor vehicle accidents (MVA) represent a significant burden on health systems globally. Tens of thousands of people are injured in Australia every year and may experience significant disability. Associated economic costs are substantial. There is little literature on the health service utilization patterns ...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2020.101997

    authors: Esmaili N,Buchlak QD,Piccardi M,Kruger B,Girosi F

    更新日期:2021-01-01 00:00:00

  • Predicting ICU readmission using grouped physiological and medication trends.

    abstract:BACKGROUND:Patients who are readmitted to an intensive care unit (ICU) usually have a high risk of mortality and an increased length of stay. ICU readmission risk prediction may help physicians to re-evaluate the patient's physical conditions before patients are discharged and avoid preventable readmissions. ICU readmi...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2018.08.004

    authors: Xue Y,Klabjan D,Luo Y

    更新日期:2019-04-01 00:00:00

  • Applying spatial distribution analysis techniques to classification of 3D medical images.

    abstract:OBJECTIVE:The objective of this paper is to classify 3D medical images by analyzing spatial distributions to model and characterize the arrangement of the regions of interest (ROIs) in 3D space. METHODS AND MATERIAL:Two methods are proposed for facilitating such classification. The first method uses measures of simila...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2004.07.001

    authors: Pokrajac D,Megalooikonomou V,Lazarevic A,Kontos D,Obradovic Z

    更新日期:2005-03-01 00:00:00

  • Using cognitive task analysis to facilitate the integration of decision support systems into the neonatal intensive care unit.

    abstract:OBJECTIVE:New medical systems may be rejected by staff because they do not integrate with local practice. An expert system, FLORENCE, is being developed to help staff in a neonatal intensive care unit (NICU) make decisions about ventilator settings when treating babies with respiratory distress syndrome. For FLORENCE t...

    journal_title:Artificial intelligence in medicine

    pub_type: 杂志文章

    doi:10.1016/j.artmed.2005.01.004

    authors: Baxter GD,Monk AF,Tan K,Dear PR,Newell SJ

    更新日期:2005-11-01 00:00:00