Green plants as intelligent organisms.

Abstract:

:Intelligent behaviour, even in humans, is an aspect of complex adaptive behaviour that provides a capacity for problem solving. This article assesses whether plants have a capacity to solve problems and, therefore, could be classified as intelligent organisms. The complex molecular network that is found in every plant cell and underpins plant behaviour is described. The problems that many plants face and that need solution are briefly outlined, and some of the kinds of behaviour used to solve these problems are discussed. A simple way of comparing plant intelligence between two genotypes is illustrated and some of the objections raised against the idea of plant intelligence are considered but discarded. It is concluded that plants exhibit the simple forms of behaviour that neuroscientists describe as basic intelligence.

journal_name

Trends Plant Sci

journal_title

Trends in plant science

authors

Trewavas A

doi

10.1016/j.tplants.2005.07.005

subject

Has Abstract

pub_date

2005-09-01 00:00:00

pages

413-9

issue

9

eissn

1360-1385

issn

1878-4372

pii

S1360-1385(05)00171-8

journal_volume

10

pub_type

杂志文章
  • The 14-3-3 proteins: cellular regulators of plant metabolism.

    abstract::Signal transduction and enzyme regulation are known to occur via phosphorylation, but it is becoming increasingly apparent that phosphorylation might be only a necessary preamble to regulation. In many cases, the phosphorylated target protein must associate with a specialized adapter protein, known as 14-3-3, to compl...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(99)01462-4

    authors: Chung HJ,Sehnke PC,Ferl RJ

    更新日期:1999-09-01 00:00:00

  • Manipulators live better, but are they always parasites?

    abstract::A recent study reports partner manipulation for an interaction that was considered a reward-for-defence mutualism. Secretions of lycaenid caterpillars altered ant locomotion and aggressiveness, likely by manipulating dopaminergic signalling. This study opens the question whether such manipulation is common and whether...

    journal_title:Trends in plant science

    pub_type: 评论,杂志文章

    doi:10.1016/j.tplants.2015.08.001

    authors: Heil M

    更新日期:2015-09-01 00:00:00

  • Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?

    abstract::The identification of several lesion mimic mutants (LMM) that misregulate cell death constitutes a powerful tool to unravel programmed cell death (PCD) pathways in plants, particularly the hypersensitive response (HR), a form of PCD associated with resistance to pathogens. Recently, the characterization of novel LMM h...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/S1360-1385(03)00108-0

    authors: Lorrain S,Vailleau F,Balagué C,Roby D

    更新日期:2003-06-01 00:00:00

  • In Silico Roots: Room for Growth.

    abstract::Computational models are invaluable tools for understanding the hormonal and genetic control of root development. Thus far, models have focused on the crucial roles that auxin transport and metabolism play in determining the auxin signaling gradient that controls the root meristem. Other hormones such as cytokinins, g...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2018.11.005

    authors: Rutten JP,Ten Tusscher K

    更新日期:2019-03-01 00:00:00

  • Weed genomics: new tools to understand weed biology.

    abstract::In spite of the large yield losses that weeds inflict on crops, we know little about the genomics of economically important weed species. Comparative genomics between plant model species and weeds, map-based approaches, genomic sequencing and functional genomics can play vital roles in understanding and dissecting wee...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2004.06.003

    authors: Basu C,Halfhill MD,Mueller TC,Stewart CN Jr

    更新日期:2004-08-01 00:00:00

  • The Arabidopsis RRS1-R disease resistance gene--uncovering the plant's nucleus as the new battlefield of plant defense?

    abstract::The isolation of over 30 plant disease-resistance genes revealed that most genes encode putatively cytoplasmic proteins with a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR). However, the recent isolation of the Arabidopsis RRS1-R gene has uncovered a novel NBS-LRR subtype that harbors a C-terminal exte...

    journal_title:Trends in plant science

    pub_type: 新闻

    doi:10.1016/s1360-1385(02)02334-8

    authors: Lahaye T

    更新日期:2002-10-01 00:00:00

  • siRNAs and DNA methylation: seedy epigenetics.

    abstract::To understand how DNA sequence is translated to phenotype we must understand the epigenetic features that regulate gene expression. Recent research illuminates the complex interactions between DNA methylation, small RNAs, silencing of transposable elements, and genomic imprinting in the Arabidopsis (Arabidopsis thalia...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.01.002

    authors: Mosher RA,Melnyk CW

    更新日期:2010-04-01 00:00:00

  • Plasticity of specialized metabolism as mediated by dynamic metabolons.

    abstract::The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in mult...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2014.11.002

    authors: Laursen T,Møller BL,Bassard JE

    更新日期:2015-01-01 00:00:00

  • Emerging Insights into the Functions of Pathogenesis-Related Protein 1.

    abstract::The members of the pathogenesis-related protein 1 (PR-1) family are among the most abundantly produced proteins in plants on pathogen attack, and PR-1 gene expression has long been used as a marker for salicylic acid-mediated disease resistance. However, despite considerable interest over several decades, their requir...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2017.06.013

    authors: Breen S,Williams SJ,Outram M,Kobe B,Solomon PS

    更新日期:2017-10-01 00:00:00

  • Functions of microRNAs in plant stress responses.

    abstract::The discovery of microRNAs (miRNAs) as gene regulators has led to a paradigm shift in the understanding of post-transcriptional gene regulation in plants and animals. miRNAs have emerged as master regulators of plant growth and development. Evidence suggesting that miRNAs play a role in plant stress responses arises f...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.01.010

    authors: Sunkar R,Li YF,Jagadeeswaran G

    更新日期:2012-04-01 00:00:00

  • Chromatin regulation of flowering.

    abstract::The transition to flowering is a major developmental switch in the life cycle of plants. In Arabidopsis (Arabidopsis thaliana), chromatin mechanisms play critical roles in flowering-time regulation through the expression control of key flowering-regulatory genes. Various conserved chromatin modifiers, plant-specific f...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.05.001

    authors: He Y

    更新日期:2012-09-01 00:00:00

  • Leveraging metabolomics for functional investigations in sequenced marine diatoms.

    abstract::Recent years have witnessed the genomic decoding of a wide range of photosynthetic organisms from the model plant Arabidopsis thaliana and the complex genomes of important crop species to single-celled marine phytoplankton. The comparative sequencing of green, red and brown algae has provided considerable insight into...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2012.02.005

    authors: Fernie AR,Obata T,Allen AE,Araújo WL,Bowler C

    更新日期:2012-07-01 00:00:00

  • Source to sink: regulation of carotenoid biosynthesis in plants.

    abstract::Carotenoids are a diverse group of colourful pigments naturally found in plants, algae, fungi and bacteria. They play essential roles in development, photosynthesis, root-mycorrhizal interactions and the production of phytohormones, such as abscisic acid and strigolactone. Carotenoid biosynthesis is regulated througho...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2010.02.003

    authors: Cazzonelli CI,Pogson BJ

    更新日期:2010-05-01 00:00:00

  • Modification of DNA Checkpoints to Confer Aluminum Tolerance.

    abstract::Although aluminum (Al) toxicity represents a global agricultural problem, the biochemical targets for Al remain elusive. Recently identified Arabidopsis mutants with increased Al tolerance provide evidence of DNA as one of the main targets of Al. This insight could lead the way for novel strategies to generate Al-tole...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2016.12.003

    authors: Eekhout T,Larsen P,De Veylder L

    更新日期:2017-02-01 00:00:00

  • Hydrogenases in green algae: do they save the algae's life and solve our energy problems?

    abstract::Green algae are the only known eukaryotes with both oxygenic photosynthesis and a hydrogen metabolism. Recent physiological and genetic discoveries indicate a close connection between these metabolic pathways. The anaerobically inducible hydA genes of algae encode a special type of highly active [Fe]-hydrogenase. Elec...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(02)02274-4

    authors: Happe T,Hemschemeier A,Winkler M,Kaminski A

    更新日期:2002-06-01 00:00:00

  • Relearning our ABCs: new twists on an old model.

    abstract::Over the past decade, the ABC model of flower development has been widely promulgated. However, correct flower-organ development requires not only the ABC genes but also the SEPALLATA genes. When the SEPALLATA genes are expressed together with the ABC genes, both vegetative and cauline leaves are converted to floral o...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(01)01987-2

    authors: Jack T

    更新日期:2001-07-01 00:00:00

  • TCP three-way handshake: linking developmental processes with plant immunity.

    abstract::The TCP gene family encodes plant-specific transcription factors involved in growth and development. Equally important are the interactions between TCP factors and other pathways extending far beyond development, as they have been found to regulate a variety of hormonal pathways and signaling cascades. Recent advances...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.01.005

    authors: Lopez JA,Sun Y,Blair PB,Mukhtar MS

    更新日期:2015-04-01 00:00:00

  • Plasticity versus Adaptation of Ambient-Temperature Flowering Response.

    abstract::It is challenging to understand how plants adapt flowering time to novel environmental conditions, such as global warming, while maintaining plasticity in response to daily fluctuating temperatures. A recent study shows a role for transposons and highlights the need to investigate how these different responses evolved...

    journal_title:Trends in plant science

    pub_type: 评论,杂志文章

    doi:10.1016/j.tplants.2015.11.015

    authors: Pajoro A,Verhage L,Immink RGH

    更新日期:2016-01-01 00:00:00

  • MicroProteins: small size-big impact.

    abstract::MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining characteristics of a miP. In this ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2015.05.011

    authors: Eguen T,Straub D,Graeff M,Wenkel S

    更新日期:2015-08-01 00:00:00

  • Oxidative tailoring of carotenoids: a prospect towards novel functions in plants.

    abstract::Carotenoids not only play a crucial role in their intact form but also are an important reservoir of lipid-derived bioactive mediators. The process is initiated by tailoring enzymes that cleave carotenoids into apocarotenoids. Apocarotenoids act as visual or volatile signals to attract pollinating and seed dispersal a...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2005.02.007

    authors: Bouvier F,Isner JC,Dogbo O,Camara B

    更新日期:2005-04-01 00:00:00

  • A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation.

    abstract::Any given pathogenic microbial species typically colonizes a limited number of plant species. Plant species outside of this host range mount nonhost disease resistance to attempted colonization by the, in this case, non-adapted pathogen. The underlying mechanism of nonhost immunity and host immunity involves the same ...

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/j.tplants.2011.01.001

    authors: Schulze-Lefert P,Panstruga R

    更新日期:2011-03-01 00:00:00

  • MAPK cascades in plant defense signaling.

    abstract::The Arabidopsis genome encodes approximately 20 different mitogen-activated protein kinases (MAPKs) that are likely to be involved in growth, development and responses to endogenous and environmental cues. Several plant MAPKs are activated by a variety of stress stimuli, including pathogen infection, wounding, tempera...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(01)02103-3

    authors: Zhang S,Klessig DF

    更新日期:2001-11-01 00:00:00

  • Phylloplane proteins: emerging defenses at the aerial frontline?

    abstract::The phylloplane, or leaf surface, is an interkingdom crossroads between plants and microorganisms, and secretion of antimicrobial biochemicals to aerial surfaces is thought to be one defensive strategy by which plants deter potential pathogens. Secondary metabolites on leaf surfaces are well documented but antimicrobi...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.12.003

    authors: Shepherd RW,Wagner GJ

    更新日期:2007-02-01 00:00:00

  • Capturing diversity in the cereals: many options but little promiscuity.

    abstract::It is generally recognized by geneticists and plant breeders alike that there is a need to further improve the ability to capture and manipulate genetic diversity. The effective harnessing of diversity in traditional breeding programmes is limited and, therefore, it is vital that meiotic recombination can be manipulat...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.12.002

    authors: Able JA,Langridge P,Milligan AS

    更新日期:2007-02-01 00:00:00

  • Catabolism of volatile organic compounds influences plant survival.

    abstract::Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Spec...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2013.08.011

    authors: Oikawa PY,Lerdau MT

    更新日期:2013-12-01 00:00:00

  • Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition.

    abstract::Plant nutrient acquisition is tightly regulated by resource availability and metabolic needs, implying the existence of communication between roots and shoots to ensure their integration at the whole-plant level. Here, we focus on systemic signaling pathways controlling nitrogen (N) nutrition, achieved both by the roo...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2020.11.009

    authors: Gautrat P,Laffont C,Frugier F,Ruffel S

    更新日期:2020-12-23 00:00:00

  • The Pivotal Role of Ethylene in Plant Growth.

    abstract::Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in ...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2018.01.003

    authors: Dubois M,Van den Broeck L,Inzé D

    更新日期:2018-04-01 00:00:00

  • Carotenoid sequestration in plants: the role of carotenoid-associated proteins.

    abstract::In plants, carotenoid accumulation and sequestration take place within chloroplasts and chromoplasts. In the chloroplast, practically all carotenoids are associated with chlorophyll-binding proteins, whereas chromoplasts have developed a unique mechanism to sequester carotenoids within specific lipoprotein structures....

    journal_title:Trends in plant science

    pub_type: 杂志文章

    doi:10.1016/s1360-1385(99)01414-4

    authors: Vishnevetsky M,Ovadis M,Vainstein A

    更新日期:1999-06-01 00:00:00

  • How do plants respond to nutrient shortage by biomass allocation?

    abstract::Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long bee...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/j.tplants.2006.10.007

    authors: Hermans C,Hammond JP,White PJ,Verbruggen N

    更新日期:2006-12-01 00:00:00

  • Age-related changes in photosynthesis of woody plants.

    abstract::Woody peoffnials do not appear to go through a defined senescence phase but do have predictable developmental stages. Reduced photosynthesis and stomatal conductance have been reported at all developmental transitions, although some studies have shown the opposite. What causes these changes and why do results differ a...

    journal_title:Trends in plant science

    pub_type: 杂志文章,评审

    doi:10.1016/s1360-1385(00)01691-5

    authors: Bond BJ

    更新日期:2000-08-01 00:00:00