Enhanced mechanical and electrical properties of heteroscaled hydrogels infused with aqueous-dispersible hybrid nanofibers.

Abstract:

:Despite the widespread use as platforms for various biomedical applications, engineering hydrogels to impart multifunctionality and control physical properties, while closely mimicking the native cellular microenvironment, is still a significant challenge. Herein, nanofibers consisting of hydrophilic and photocrosslinkable biopolymer and conductive polymer (i.e. PEDOT:PSS) are first fabricated via electrospinning, cut into micrometer-lengths, and chemically crosslinked to develop dispersible hybrid nanofiber (dhNF) as heteroscale reinforcing elements for developing nanocomposite hydrogels. The dhNF can be readily dispersed in aqueous precursor solutions without dissolution and incorporated into hydrogels. The resulting 'heteroscale' dhNF-infused hydrogels, consisting of molecular and nanofibrous polymeric network, more closely resembles natural extracellular matrix, and show significant improvement on both mechanical strength and electrical conductivity, by dhNF concentration as well as PEDOT:PSS content in dhNF. These properties not only directly help improve the viability and proliferation of encapsulated cells, but also more effectively relayed external electrical stimulation mediated by enhanced conductivity.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Kim S,Cha C

doi

10.1088/1758-5090/ab5385

subject

Has Abstract

pub_date

2019-12-19 00:00:00

pages

015020

issue

1

eissn

1758-5082

issn

1758-5090

journal_volume

12

pub_type

杂志文章
  • Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration.

    abstract::Nowadays, 3D bioprinting technologies are rapidly emerging in the field of tissue engineering and regenerative medicine as effective tools enabling the fabrication of advanced tissue constructs that can recapitulate in vitro organ/tissue functions. Selecting the best strategy for bioink deposition is often challenging...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5090/aae605

    authors: Costantini M,Colosi C,Święszkowski W,Barbetta A

    更新日期:2018-11-09 00:00:00

  • The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures.

    abstract::Cell cultures for tissue engineering are traditionally prepared on two-dimensional or three-dimensional scaffolds with simple pores; however, this limits mass transportation, which is necessary for cell viability and function. In this paper, an innovative method is proposed for fabricating porous scaffolds with design...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/1/015004

    authors: Liu Y,Li X,Qu X,Zhu L,He J,Zhao Q,Wu W,Li D

    更新日期:2012-03-01 00:00:00

  • Hydrogel-fibre composites with independent control over cell adhesion to gel and fibres as an integral approach towards a biomimetic artificial ECM.

    abstract::In the body, cells are surrounded by an interconnected mesh of insoluble, bioactive protein fibres to which they adhere in a well-controlled manner, embedded in a hydrogel-like highly hydrated matrix. True morphological and biochemical mimicry of this so-called extracellular matrix (ECM) remains a challenge but appear...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024106

    authors: Schulte VA,Hahn K,Dhanasingh A,Heffels KH,Groll J

    更新日期:2014-06-01 00:00:00

  • Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration.

    abstract::Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, we used electrospinn...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/1/015006

    authors: Nandakumar A,Tahmasebi Birgani Z,Santos D,Mentink A,Auffermann N,van der Werf K,Bennink M,Moroni L,van Blitterswijk C,Habibovic P

    更新日期:2013-03-01 00:00:00

  • Cell patterning through inkjet printing of one cell per droplet.

    abstract::The inkjet ejection technology used in printers has been adopted and research has been conducted on manufacturing artificial tissue by patterning cells through micronozzle ejection of small droplets containing multiple cells. However, stable injection of cells has proven difficult, owing to the frequent occurrence of ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/4/045005

    authors: Yamaguchi S,Ueno A,Akiyama Y,Morishima K

    更新日期:2012-12-01 00:00:00

  • 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.

    abstract::In this study, we report the step-gradient nanocomposite (NC) hydrogel generated easily by spatial connection of different nanocomposite hydrogel pastes varying in the concentrations of nanomaterials with the aid of a 3D printing technique. The prepared 3D printed gradient NC hydrogel has self-adhesive properties and ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab3582

    authors: Motealleh A,Çelebi-Saltik B,Ermis N,Nowak S,Khademhosseini A,Kehr NS

    更新日期:2019-08-22 00:00:00

  • Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.

    abstract::Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab19fd

    authors: Cidonio G,Alcala-Orozco CR,Lim KS,Glinka M,Mutreja I,Kim YH,Dawson JI,Woodfield TBF,Oreffo ROC

    更新日期:2019-06-12 00:00:00

  • The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.

    abstract::We previously developed the Bio-Pick, Place, and Perfuse (Bio-P3) instrument to fabricate large perfusable tissue constructs by stacking and aligning scaffold-free living microtissues with integrated lumens. The Bio-P3 required an actuating mechanism to manipulate living microtissues of various sizes and shapes that a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025015

    authors: Ip BC,Cui F,Tripathi A,Morgan JR

    更新日期:2016-05-25 00:00:00

  • Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication.

    abstract::Advances in three-dimensional cell cultures offer new opportunities in biomedical research and drug development. However, there are still challenges to overcome, including the lack of reliability, repeatability and complexity of tissues obtained by these techniques. In this study, we describe a new bioprinting system ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf625

    authors: da Conceicao Ribeiro R,Pal D,Ferreira AM,Gentile P,Benning M,Dalgarno K

    更新日期:2018-12-27 00:00:00

  • Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds.

    abstract::Plant cell cultures produce active agents for pharmaceuticals, food and cosmetics. However, up to now process control for plant cell suspension cultures is challenging. A positive impact of cell immobilization, such as encapsulation in hydrogel beads, on secondary metabolites production has been reported for several p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8854

    authors: Seidel J,Ahlfeld T,Adolph M,Kümmritz S,Steingroewer J,Krujatz F,Bley T,Gelinsky M,Lode A

    更新日期:2017-11-14 00:00:00

  • Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement.

    abstract::Degeneration of the intervertebral disc (IVD) represents a significant musculoskeletal disease burden. Tissue engineering has proposed several strategies comprising the use of biodegradable materials to prepare scaffolds that can present mechanical properties similar to those of native IVD tissues. However, this might...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/1/015008

    authors: van Uden S,Silva-Correia J,Correlo VM,Oliveira JM,Reis RL

    更新日期:2015-01-21 00:00:00

  • Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.

    abstract::A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa663b

    authors: Lin H,Li Q,Lei Y

    更新日期:2017-04-24 00:00:00

  • Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    abstract::In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate bl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/2/025009

    authors: Marchioli G,van Gurp L,van Krieken PP,Stamatialis D,Engelse M,van Blitterswijk CA,Karperien MB,de Koning E,Alblas J,Moroni L,van Apeldoorn AA

    更新日期:2015-05-28 00:00:00

  • Three-dimensional inkjet biofabrication based on designed images.

    abstract::Tissue engineering has been developed with the ultimate aim of manufacturing human organs, but success has been limited to only thin tissues and tissues with no significant structures. In order to construct more complicated tissues, we have developed a three-dimensional (3D) fabrication technology in which 3D structur...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/3/034113

    authors: Arai K,Iwanaga S,Toda H,Genci C,Nishiyama Y,Nakamura M

    更新日期:2011-09-01 00:00:00

  • Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.

    abstract::Here we developed a composite scaffold of pearl/poly(lactic-co-glycolic acid) (pearl/PLGA) utilizing the low-temperature deposition manufacturing (LDM). LDM makes it possible to fabricate scaffolds with designed microstructure and macrostructure, while keeping the bioactivity of biomaterials by working at a low temper...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/2/2/025002

    authors: Xu M,Li Y,Suo H,Yan Y,Liu L,Wang Q,Ge Y,Xu Y

    更新日期:2010-06-01 00:00:00

  • Optimized silicon reinforcement of carbon coatings by pulsed laser technique for superior functional biomedical surfaces fabrication.

    abstract::We report on the fabrication of silicon-reinforced carbon (C:Si) structures by combinatorial pulsed laser deposition to search for the best design for a new generation of multi-functional coated implants. The synthesized films were characterized from the morphological, structural, compositional, mechanical and microbi...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa7076

    authors: Mihailescu IN,Bociaga D,Popescu-Pelin G,Stan GE,Duta L,Socol G,Chifiriuc MC,Bleotu C,Lazar V,Husanu MA,Zgura I,Miculescu F,Negut I,Hapenciuc C

    更新日期:2017-06-01 00:00:00

  • Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation.

    abstract::Drop-on-demand (DoD) inkjet printing has been explored for a range of applications, including those to selectively deposit cellular material, due to the high accuracy and scalability of such systems when compared with alternative bioprinting techniques. Despite this, there remain considerable limitations when handling...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aba2f8

    authors: Dudman JPR,Ferreira AM,Gentile P,Wang X,Ribeiro RDC,Benning M,Dalgarno KW

    更新日期:2020-08-12 00:00:00

  • Development of TRACER: tissue roll for analysis of cellular environment and response.

    abstract::The tumour microenvironment is heterogeneous and consists of multiple cell types, variable extracellular matrix (ECM) composition, and contains cell-defined gradients of small molecules, oxygen, nutrients and waste. Emerging in vitro cell culture systems that attempt to replicate these features often fail to incorpora...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045008

    authors: Rodenhizer D,Cojocari D,Wouters BG,McGuigan AP

    更新日期:2016-10-18 00:00:00

  • Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments.

    abstract::As an alternative to conventional cell culture and animal testing, an organ-on-a-chip is applied to study the biological phenomena of organ development and disease, as well as the interactions between human tissues and external stimuli such as chemicals, forces and electricity. The pattern design of a microfluidic cha...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaa900

    authors: Mao M,He J,Lu Y,Li X,Li T,Zhou W,Li D

    更新日期:2018-02-05 00:00:00

  • Trapping cell spheroids and organoids using digital acoustofluidics.

    abstract::The precise positioning and arrangement of cell spheroids and organoids are critical to reconstructing complex tissue architecture for tissue engineering and regenerative medicine. Here, we present a digital acoustofluidic method to manipulate cell spheroids and organoids with unprecedented dexterity. By introducing l...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab9582

    authors: Cai H,Wu Z,Ao Z,Nunez A,Chen B,Jiang L,Bondesson M,Guo F

    更新日期:2020-07-01 00:00:00

  • Neural priming of adipose-derived stem cells by cell-imprinted substrates.

    abstract::Cell-imprinting technology is a novel method for directing stem cell fate using substrates molded from target cells. Here, we fabricated and studied cell-imprinted substrates for neural priming in human adipose-derived stem cells in the absence of chemical cues. We molded polydimethylsiloxane (PDMS) silicone substrate...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abc66f

    authors: Ghazali ZS,Eskandari M,Bonakdar S,Renaud P,Mashinchian O,Shalileh S,Bonini F,Uckay I,Preynat-Seauve O,Braschler T

    更新日期:2020-10-30 00:00:00

  • A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model.

    abstract::Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab94ce

    authors: Mancini IAD,Schmidt S,Brommer H,Pouran B,Schäfer S,Tessmar J,Mensinga A,van Rijen MHP,Groll J,Blunk T,Levato R,Malda J,van Weeren PR

    更新日期:2020-07-01 00:00:00

  • Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.

    abstract::A bio-inspired hydrogel for 3D bioprinting of soft free-standing neural tissues is presented. The novel filler-free bioinks were designed by combining natural polymers for extracellular matrix biomimicry with synthetic polymers to endow desirable rheological properties for 3D bioprinting. Crosslinking of thiolated Plu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab02c9

    authors: Haring AP,Thompson EG,Tong Y,Laheri S,Cesewski E,Sontheimer H,Johnson BN

    更新日期:2019-02-25 00:00:00

  • Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration.

    abstract::A major limitation of existing 3D implantable structures for bone tissue engineering is that most of the cells rapidly attach on the outer edges of the structure, restricting the cells penetration into the inner parts and causing the formation of a necrotic core. Furthermore, these structures generally possess a rando...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaa718

    authors: Paun IA,Popescu RC,Mustaciosu CC,Zamfirescu M,Calin BS,Mihailescu M,Dinescu M,Popescu A,Chioibasu D,Soproniy M,Luculescu CR

    更新日期:2018-02-05 00:00:00

  • Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs.

    abstract::A critical consideration in tissue engineering is to recapitulate the microstructural organization of native tissues that is essential to their function. Scaffold-based techniques have focused on achieving this via the contact guidance principle wherein topographical cues offered by scaffold fibers direct migration an...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab15cf

    authors: Chansoria P,Narayanan LK,Schuchard K,Shirwaiker R

    更新日期:2019-04-26 00:00:00

  • Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.

    abstract::Three-dimensional (3D) printed poly(ε-caprolactone) (PCL) based scaffolds have being proposed for different tissue engineering applications. This study addresses the design and fabrication of 3D PCL constructs with different struts alignments at 90°, 45° and 90° with offset. The morphology and the mechanical behavior ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa698e

    authors: Ribeiro JFM,Oliveira SM,Alves JL,Pedro AJ,Reis RL,Fernandes EM,Mano JF

    更新日期:2017-05-11 00:00:00

  • Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.

    abstract::Calcium alginate hydrogels are widely used as biocompatible materials in a substantial number of biomedical applications. This paper reports on a hybrid 3D printing and electrodeposition approach for forming 3D calcium alginate hydrogels in a controllable manner. Firstly, a specific 3D hydrogel printing system is deve...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed8

    authors: Shang W,Liu Y,Wan W,Hu C,Liu Z,Wong CT,Fukuda T,Shen Y

    更新日期:2017-06-07 00:00:00

  • Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche.

    abstract::Nerve tissues contain hierarchically ordered nerve fibers, while each of the nerve fibers has nano-oriented fibrous extracellular matrix and a core-shell structure of tubular myelin sheath with elongated axons encapsulated. Here, we report, for the first time, a ready approach to fabricate biomimetic nerve fibers whic...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab860d

    authors: Chen S,Wu C,Liu A,Wei D,Xiao Y,Guo Z,Chen L,Zhu Y,Sun J,Luo H,Fan H

    更新日期:2020-05-12 00:00:00

  • Biomimetic matrix fabricated by LMP-1 gene-transduced MC3T3-E1 cells for bone regeneration.

    abstract::Bone healing is regulated by multiple microenvironmental signals provided by the extracellular matrix (ECM). This study aimed to mimic the native osteoinductive microenvironment by developing an ECM using gene-transduced cells. The LIM mineralization protein-1 (LMP-1) gene was transferred to murine pre-osteoblast cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8dd1

    authors: Ma J,Guo W,Gao M,Huang B,Qi Q,Ling Z,Chen Y,Hu H,Zhou H,Yu F,Chen K,Richards G,Lin J,Zhou Z,Xiao D,Zou X

    更新日期:2017-11-14 00:00:00

  • 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.

    abstract::Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve rege...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aacd30

    authors: Ning L,Sun H,Lelong T,Guilloteau R,Zhu N,Schreyer DJ,Chen X

    更新日期:2018-06-29 00:00:00