Effects of medial collateral ligament release, limb correction, and soft tissue laxity on knee joint contact force distribution after medial opening wedge high tibial osteotomy: a computational study.

Abstract:

:In this study, the effects of medial collateral ligament (MCL) release and the limb correction strategies with pre-existing MCL laxity on tibiofemoral contact force distribution after high tibial osteotomy (HTO) were investigated. The medial and lateral contact forces of the knee were quantified during simulated standing using computational modeling techniques. MCL slackness had a primary influence on contact force distribution of the knee, while there was little effect of simulated limb correction. Anterior and middle bundle release, which involved the partial release of two-thirds of the superficial MCL, was shown to be an optimal surgical method in HTO, achieving balanced contact distribution in simulated weight-bearing standing.

authors

Purevsuren T,Khuyagbaatar B,Kim K,Kim YH

doi

10.1080/10255842.2018.1549658

subject

Has Abstract

pub_date

2019-02-01 00:00:00

pages

243-250

issue

3

eissn

1025-5842

issn

1476-8259

journal_volume

22

pub_type

杂志文章
  • Solute transport in cartilage undergoing cyclic deformation.

    abstract::There are no blood vessels in cartilage to transport nutrients and growth factors to chondrocytes dispersed throughout the cartilage matrix. Insulin-like growth factor-I (IGF-I) is a large molecule with an important role in cartilage growth and metabolism, however, it first must reach the chondrocytes to exert its eff...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701309163

    authors: Gardiner B,Smith D,Pivonka P,Grodzinsky A,Frank E,Zhang L

    更新日期:2007-08-01 00:00:00

  • Inhalation pressure distributions for medical gas mixtures calculated in an infant airway morphology model.

    abstract::A numerical pressure loss model previously used for adult human airways has been modified to simulate the inhalation pressure distribution in a healthy 9-month-old infant lung morphology model. Pressure distributions are calculated for air as well as helium and xenon mixtures with oxygen to investigate the effects of ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.903932

    authors: Gouinaud L,Katz I,Martin A,Hazebroucq J,Texereau J,Caillibotte G

    更新日期:2015-01-01 00:00:00

  • The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study.

    abstract::Remodelling and adaptation of bone within the pelvis is believed to be influenced by the mechanical strains generated during locomotion. Variation in the cortical bone thickness observed in the prenatal ilium has been linked to the musculoskeletal loading associated with in utero movements; for example the development...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1777546

    authors: Watson PJ,Fagan MJ,Dobson CA

    更新日期:2020-10-01 00:00:00

  • Quantification of soft tissue balance in total knee arthroplasty using finite element analysis.

    abstract::Unbalanced contact force on the tibial component has been considered a factor leading to loosening of the implant and increased wear of the bearing surface in total knee arthroplasty. Because it has been reported that good alignment cannot guarantee successful clinical outcomes, the soft tissue balance should be check...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.765409

    authors: Oh KJ,Park WM,Kim K,Kim YH

    更新日期:2014-01-01 00:00:00

  • Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.

    abstract::This study deals with recent researches undertaken by the authors in the field of hydrodynamics of human swimming. The aim of this numerical study was to investigate the flow around the entire swimmer's body. The results presented in this article focus on the combination of a 3D computational fluid dynamics code and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.683429

    authors: Popa CV,Arfaoui A,Fohanno S,Taïar R,Polidori G

    更新日期:2014-01-01 00:00:00

  • Muscle parameters estimation based on biplanar radiography.

    abstract::The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Res...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1171855

    authors: Dubois G,Rouch P,Bonneau D,Gennisson JL,Skalli W

    更新日期:2016-11-01 00:00:00

  • A multi-body dynamics study on a weight-drop test of rat brain injury.

    abstract::Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI s...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1280733

    authors: Yan W,Sossou G,Rajan R

    更新日期:2017-05-01 00:00:00

  • Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest.

    abstract:OBJECTIVES:The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. MATERIALS AND METHODS:A mandibular bone model was obtained from a computed tomography scan. A three...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1507025

    authors: Macedo JP,Pereira J,Faria J,Souza JCM,Alves JL,López-López J,Henriques B

    更新日期:2018-09-01 00:00:00

  • Development of a three-dimensional body shape model of young children for child restraint design.

    abstract::The design of child restraints is guided in part by anthropometric data describing the distributions of body dimensions of children. However, three-dimensional body shape data have not been available for children younger than three years of age. This study presents body shape models for children weighing 9-23 kg in a ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1521960

    authors: Jones MLH,Ebert SM,Reed MP,Klinich KD

    更新日期:2018-11-01 00:00:00

  • Parametric finite element analysis and closed-form solutions in orthodontics.

    abstract::The goal and clinical relevance of this work was the development of closed formulas that are correct and simple enough for a fast decision making by the orthodontist in the daily praxis. This paper performs a parametric three-dimensional finite element linear analysis on a maxillary central incisor with a root of para...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840290032126

    authors: Provatidis CG

    更新日期:2002-04-01 00:00:00

  • Biomechanical analysis of the anterior cervical fusion.

    abstract::This paper presents a biomechanical analysis of the cervical C5-C6 functional spine unit before and after the anterior cervical discectomy and fusion. The aim of this work is to study the influence of the medical procedure and its instrumentation on range of motion and stress distribution. First, a three-dimensional f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.597351

    authors: Fernandes PC,Fernandes PR,Folgado JO,Levy Melancia J

    更新日期:2012-01-01 00:00:00

  • Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel.

    abstract::Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-sli...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1055257

    authors: Ali N,Javid K,Sajid M,Anwar Bég O

    更新日期:2016-01-01 00:00:00

  • A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.

    abstract::This study is devoted to the development of a non-linear anisotropic model for the human periodontal ligament (PDL). A thorough knowledge of the behaviour of the PDL is vital in understanding the mechanics of orthodontic tooth mobility, soft tissue response and proposed treatment plans. There is considerable evidence ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/13639080701314894

    authors: Zhurov AI,Limbert G,Aeschlimann DP,Middleton J

    更新日期:2007-06-01 00:00:00

  • A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.

    abstract::Generation of finite element (FE) meshes of vertebrae from computed tomography (CT) scans is labour intensive due to their geometric complexity. As such, techniques that simplify creation of meshes of vertebrae are needed to make FE analysis feasible for large studies and clinical applications. Techniques to obtain a ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840902802883

    authors: Dai Y,Niebur GL

    更新日期:2009-10-01 00:00:00

  • A finite element model of the face including an orthotropic skin model under in vivo tension.

    abstract::Computer models of the human face have the potential to be used as powerful tools in surgery simulation and animation development applications. While existing models accurately represent various anatomical features of the face, the representation of the skin and soft tissues is very simplified. A computer model of the...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.820720

    authors: Flynn C,Stavness I,Lloyd J,Fels S

    更新日期:2015-01-01 00:00:00

  • Implementation and validation of probabilistic models of the anterior longitudinal ligament and posterior longitudinal ligament of the cervical spine.

    abstract::The objective of this investigation was to develop probabilistic finite element (FE) models of the anterior longitudinal ligament (ALL) and posterior longitudinal ligament (PLL) of the cervical spine that incorporate the natural variability of biological specimens. In addition to the model development, a rigorous vali...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.726353

    authors: Francis WL,Eliason TD,Thacker BH,Paskoff GR,Shender BS,Nicolella DP

    更新日期:2014-01-01 00:00:00

  • Experimental parameter estimation method for nonlinear viscoelastic composite material models: an application on arterial tissue.

    abstract::This study is aimed at setting a method of experimental parameter estimation for large-deforming nonlinear viscoelastic continuous fibre-reinforced composite material model. Specifically, arterial tissue was investigated during experimental research and parameter estimation studies, due to medical, scientific and soci...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.666532

    authors: Sunbuloglu E,Bozdag E,Toprak T,Islak C

    更新日期:2013-01-01 00:00:00

  • A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.

    abstract::The aim of this paper is to use a poroviscohyperelastic (PVHE) model, which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using finite element analysis models of micropipette aspira...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.996875

    authors: Nguyen TD,Oloyede A,Gu Y

    更新日期:2016-01-01 00:00:00

  • The cushioning function of woodpecker's jaw apparatus during the pecking process.

    abstract::Woodpeckers can withstand a fierce impact during pecking without any brain injury. Although directly involved in the whole pecking, the role of the jaw apparatus played in the impact-resistant process of woodpeckers is still not fully clear. We employed finite element analysis, impact tests in vivo, and post-traumatic...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1838489

    authors: Xu P,Ni Y,Lu S,Liu S,Zhou X,Fan Y

    更新日期:2021-01-13 00:00:00

  • A two population model of prion transport through a tunnelling nanotube.

    abstract::This article develops a two prion population model that simulates prion trafficking between an infected dendritic cell and a neuron. The situation when the two cells are connected by a tunnelling nanotube (TNT) is simulated. Two mechanisms of prion transport are considered: lateral diffusion in the TNT membrane and ac...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.763938

    authors: Kuznetsov IA,Kuznetsov AV

    更新日期:2014-11-01 00:00:00

  • The effect of direct and indirect force transmission on peri-implant bone stress - a contact finite element analysis.

    abstract::In almost all finite element (FE) studies in dentistry, virtual forces are applied directly to dentures. The purpose of this study was to develop a FE model with non-linear contact simulation using an antagonist as force transmitter and to compare this with a similar model that uses direct force transmission. Furtherm...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1338691

    authors: Rand A,Stiesch M,Eisenburger M,Greuling A

    更新日期:2017-08-01 00:00:00

  • Subject-specific body segment parameters' estimation using biplanar X-rays: a feasibility study.

    abstract::In order to improve the reliability of children's models, the aim of this study was to determine the subject-specific masses and 3D locations of the centres of mass (CoM) of body segments using biplanar X-rays. Previous methods, validated on upper leg segments, were applied to the whole body. Six children and six adul...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255841003717608

    authors: Sandoz B,Laporte S,Skalli W,Mitton D

    更新日期:2010-12-01 00:00:00

  • Does overlay preparation design affect polymerization shrinkage stress distribution? A 3D FEA study.

    abstract::This study evaluated the polymerization shrinkage stress of three tooth preparation designs for indirect ceramic overlay by finite element analysis: isthmus preparation (IST); without isthmus preparation (wIST); and non-retentive preparation (nRET). The models were created based in prepared dental typodonts and were d...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1866561

    authors: de Andrade GS,Pinto ABA,Tribst JPM,Chun EP,Borges ALS,de Siqueira Ferreira Anzaloni Saavedra G

    更新日期:2021-01-07 00:00:00

  • Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study.

    abstract::Rupture prediction of abdominal aortic aneurysms (AAAs) remains a clinical challenge. Finite element analysis (FEA) may allow for improved identification for intervention timing, but the method needs further substantiation. In this study, experimental photoelastic method and finite element techniques were compared usi...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.574618

    authors: Callanan A,Morris LG,McGloughlin TM

    更新日期:2012-01-01 00:00:00

  • Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.

    abstract::This study presents the ankle ligament strains and ankle joint moments during an accidental injury event diagnosed as a grade I anterior talofibular ligament (ATaFL) sprain. A male athlete accidentally sprained his ankle while performing a cutting motion in a laboratory setting. The kinematic data were input to a thre...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.792809

    authors: Wei F,Fong DT,Chan KM,Haut RC

    更新日期:2015-01-01 00:00:00

  • Time-dependent elastohydrodynamic lubrication analysis of total knee replacement under walking conditions.

    abstract::This work is concerned with the lubrication analysis of artificial knee joints, which plays an increasing significant role in clinical performance and longevity of components. Time-dependent elastohydrodynamic lubrication analysis for normal total knee replacement is carried out under the cyclic variation in both load...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.485569

    authors: Su Y,Yang P,Fu Z,Jin Z,Wang C

    更新日期:2011-06-01 00:00:00

  • Biomechanical assessment and clinical analysis of different intramedullary nailing systems for oblique fractures.

    abstract::The aim of this study is to evaluate the fracture union or non-union for a specific patient that presented oblique fractures in tibia and fibula, using a mechanistic-based bone healing model. Normally, this kind of fractures can be treated through an intramedullary nail using two possible configurations that depends o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1125473

    authors: Alierta JA,Pérez MA,Seral B,García-Aznar JM

    更新日期:2016-09-01 00:00:00

  • Strategies towards rapid generation of forefoot model incorporating realistic geometry of metatarsals encapsulated into lumped soft tissues for personalized finite element analysis.

    abstract::Use of finite element (FE) foot model as a clinical diagnostics tool is likely to improve the specificity of foot injury predictions in the diabetic population. Here we proposed a novel workflow for rapid construction of foot FE model incorporating realistic geometry of metatarsals encapsulated into lumped forefoot's ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1370458

    authors: Chen WM,Lee SJ,Lee PVS

    更新日期:2017-10-01 00:00:00

  • Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    abstract::Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh gen...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.499869

    authors: Ramme AJ,Shivanna KH,Magnotta VA,Grosland NM

    更新日期:2011-10-01 00:00:00

  • Parallel splitting solvers for the isogeometric analysis of the Cahn-Hilliard equation.

    abstract::Modeling tumor growth in biological systems is a challenging problem with important consequences for diagnosis and treatment of various forms of cancer. This growth process requires large simulation complexity due to evolving biological and chemical processes in living tissue and interactions of cellular and vascular ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1661388

    authors: Puzyrev V,Łoś M,Gurgul G,Calo V,Dzwinel W,Paszyński M

    更新日期:2019-12-01 00:00:00