Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers.

Abstract:

:Silica-bonded calcite scaffolds have been successfully 3D-printed by direct ink writing, starting from a paste comprising a silicone polymer and calcite powders, calibrated in order to match a SiO2/CaCO3 weight balance of 35/65. The scaffolds, fabricated with two slightly different geometries, were first cross-linked at 350 °C, then fired at 600 °C, in air. The low temperature adopted for the conversion of the polymer into amorphous silica, by thermo-oxidative decomposition, prevented the decomposition of calcite. The obtained silica-bonded calcite scaffolds featured open porosity of about 56%-64% and compressive strength of about 2.9-5.5 MPa, depending on the geometry. Dissolution studies in SBF and preliminary cell culture tests, with bone marrow stromal cells, confirmed the in vitro bioactivity of the scaffolds and their biocompatibility. The seeded cells were found to be alive, well anchored and spread on the samples surface. The new silica-calcite composites are expected to be suitable candidates as tissue-engineering 3D scaffolds for regeneration of cancellous bone defects.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Fiocco L,Elsayed H,Badocco D,Pastore P,Bellucci D,Cannillo V,Detsch R,Boccaccini AR,Bernardo E

doi

10.1088/1758-5090/aa6c37

subject

Has Abstract

pub_date

2017-05-11 00:00:00

pages

025012

issue

2

eissn

1758-5082

issn

1758-5090

journal_volume

9

pub_type

杂志文章
  • On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure.

    abstract::Human induced pluripotent stem cells (hiPSCs) can be differentiated at high efficiency into cells of a targeting type but the resulting cell population has to be of high purity for clinical therapies to avoid teratomas. Herein, we report a microfluidic device with integrated and surface functionalised fishnet-like str...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035017

    authors: Li X,Yu L,Li J,Minami I,Nakajima M,Noda Y,Kotera H,Liu L,Chen Y

    更新日期:2016-09-08 00:00:00

  • Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement.

    abstract::Degeneration of the intervertebral disc (IVD) represents a significant musculoskeletal disease burden. Tissue engineering has proposed several strategies comprising the use of biodegradable materials to prepare scaffolds that can present mechanical properties similar to those of native IVD tissues. However, this might...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/1/015008

    authors: van Uden S,Silva-Correia J,Correlo VM,Oliveira JM,Reis RL

    更新日期:2015-01-21 00:00:00

  • Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments.

    abstract::As an alternative to conventional cell culture and animal testing, an organ-on-a-chip is applied to study the biological phenomena of organ development and disease, as well as the interactions between human tissues and external stimuli such as chemicals, forces and electricity. The pattern design of a microfluidic cha...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaa900

    authors: Mao M,He J,Lu Y,Li X,Li T,Zhou W,Li D

    更新日期:2018-02-05 00:00:00

  • A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model.

    abstract::Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab94ce

    authors: Mancini IAD,Schmidt S,Brommer H,Pouran B,Schäfer S,Tessmar J,Mensinga A,van Rijen MHP,Groll J,Blunk T,Levato R,Malda J,van Weeren PR

    更新日期:2020-07-01 00:00:00

  • Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed.

    abstract::Critical understanding of the complex metastatic cascade of prostate cancer is necessary for the development of a therapeutic interventions for treating metastatic prostate cancer. Increasing evidence supports the synergistic role of biochemical and biophysical cues in cancer progression at metastases. The biochemical...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abd9d6

    authors: Jasuja H,Kar S,Katti DR,Katti K

    更新日期:2021-01-08 00:00:00

  • Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.

    abstract::A bio-inspired hydrogel for 3D bioprinting of soft free-standing neural tissues is presented. The novel filler-free bioinks were designed by combining natural polymers for extracellular matrix biomimicry with synthetic polymers to endow desirable rheological properties for 3D bioprinting. Crosslinking of thiolated Plu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab02c9

    authors: Haring AP,Thompson EG,Tong Y,Laheri S,Cesewski E,Sontheimer H,Johnson BN

    更新日期:2019-02-25 00:00:00

  • Digital fabrication of multi-material biomedical objects.

    abstract::This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP modul...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/1/4/045001

    authors: Cheung HH,Choi SH

    更新日期:2009-12-01 00:00:00

  • Cell adhesion pattern created by OSTE polymers.

    abstract::Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa669c

    authors: Liu W,Li Y,Ding X

    更新日期:2017-04-24 00:00:00

  • Three-dimensional culture of epidermal cells on ordered cellulose scaffolds.

    abstract::An ordered cellulose film scaffold, termed a nematic ordered cellulose (NOC) template, had unique surface properties and successfully induced the establishment of a three-dimensional (3D), hierarchical structure of epidermal cells by cell attachment and subsequent culture. Initially, the scaffold surface properties we...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/2/025010

    authors: Seyama T,Suh EY,Kondo T

    更新日期:2013-06-01 00:00:00

  • Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.

    abstract::Calcium alginate hydrogels are widely used as biocompatible materials in a substantial number of biomedical applications. This paper reports on a hybrid 3D printing and electrodeposition approach for forming 3D calcium alginate hydrogels in a controllable manner. Firstly, a specific 3D hydrogel printing system is deve...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed8

    authors: Shang W,Liu Y,Wan W,Hu C,Liu Z,Wong CT,Fukuda T,Shen Y

    更新日期:2017-06-07 00:00:00

  • In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures.

    abstract::The aim of this study was to comparatively evaluate the angiogenic capacity of cocultures using either human bone marrow- or human adipose tissue-derived mesenchymal stem cells (MSCs) (BM- or AT-MSCs) with human umbilical vein endothelial cells (HUVECs) both in vitro and in vivo at early time points (i.e. days 3 and 7...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/1/015005

    authors: Ma J,Yang F,Both SK,Prins HJ,Helder MN,Pan J,Cui FZ,Jansen JA,van den Beucken JJ

    更新日期:2014-03-01 00:00:00

  • Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding.

    abstract::A major challenge in muscle tissue engineering is mimicking the ordered nanostructure of native collagen fibrils in muscles. Electrospun nanofiber constructs have been proposed as promising candidate alternatives to natural extracellular matrix. Here, we introduce a novel method to fabricate a two-dimension (2D) sheet...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024107

    authors: Park SH,Koh UH,Kim M,Yang DY,Suh KY,Shin JH

    更新日期:2014-06-01 00:00:00

  • Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds.

    abstract::Plant cell cultures produce active agents for pharmaceuticals, food and cosmetics. However, up to now process control for plant cell suspension cultures is challenging. A positive impact of cell immobilization, such as encapsulation in hydrogel beads, on secondary metabolites production has been reported for several p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8854

    authors: Seidel J,Ahlfeld T,Adolph M,Kümmritz S,Steingroewer J,Krujatz F,Bley T,Gelinsky M,Lode A

    更新日期:2017-11-14 00:00:00

  • Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.

    abstract::Here we developed a composite scaffold of pearl/poly(lactic-co-glycolic acid) (pearl/PLGA) utilizing the low-temperature deposition manufacturing (LDM). LDM makes it possible to fabricate scaffolds with designed microstructure and macrostructure, while keeping the bioactivity of biomaterials by working at a low temper...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/2/2/025002

    authors: Xu M,Li Y,Suo H,Yan Y,Liu L,Wang Q,Ge Y,Xu Y

    更新日期:2010-06-01 00:00:00

  • Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche.

    abstract::Nerve tissues contain hierarchically ordered nerve fibers, while each of the nerve fibers has nano-oriented fibrous extracellular matrix and a core-shell structure of tubular myelin sheath with elongated axons encapsulated. Here, we report, for the first time, a ready approach to fabricate biomimetic nerve fibers whic...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab860d

    authors: Chen S,Wu C,Liu A,Wei D,Xiao Y,Guo Z,Chen L,Zhu Y,Sun J,Luo H,Fan H

    更新日期:2020-05-12 00:00:00

  • Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities.

    abstract::In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/3/035013

    authors: Wang L,Liu L,Magome N,Agladze K,Chen Y

    更新日期:2013-09-01 00:00:00

  • Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control.

    abstract::Nature has evolved to grow and regenerate tissues and organs using self-assembling processes capable of organizing a wide variety of molecular building-blocks at multiple size scales. As the field of biofabrication progresses, it is essential to develop innovative ways that can enhance our capacity to build more compl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab84cb

    authors: Hedegaard CL,Mata A

    更新日期:2020-06-01 00:00:00

  • Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    abstract::In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate bl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/2/025009

    authors: Marchioli G,van Gurp L,van Krieken PP,Stamatialis D,Engelse M,van Blitterswijk CA,Karperien MB,de Koning E,Alblas J,Moroni L,van Apeldoorn AA

    更新日期:2015-05-28 00:00:00

  • Combined multi-nozzle deposition and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment.

    abstract::An engineered three-dimensional scaffold with hierarchical porosity and multiple niche microenvironments is produced using a combined multi-nozzle deposition-freeze casting technique. In this paper we present a process to fabricate a scaffold with improved interconnectivity and hierarchical porosity. The scaffold is p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/1/015007

    authors: Snyder JE,Hunger PM,Wang C,Hamid Q,Wegst UG,Sun W

    更新日期:2014-03-01 00:00:00

  • In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications.

    abstract::Electrospun fibers of natural polymers are desirable for biomedical applications such as tissue engineering. Crosslinking of electrospun fibers of natural polymers is needed to prevent dissolution in water and to enhance mechanical strength. In this study, an in situ UV-crosslinking method was developed for crosslinki...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/3/035008

    authors: Lin WH,Tsai WB

    更新日期:2013-09-01 00:00:00

  • An in vitro vascular chip using 3D printing-enabled hydrogel casting.

    abstract::An important unsolved challenge in tissue engineering has been the inability to replicate the geometry and function of vascular networks and blood vessels. Here, we engineer a user-defined 3D microfluidic vascular channel using 3D printing-enabled hydrogel casting. First, a hollow L-shaped channel is developed using a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035015

    authors: Yang L,Shridhar SV,Gerwitz M,Soman P

    更新日期:2016-08-26 00:00:00

  • Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.

    abstract::A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa663b

    authors: Lin H,Li Q,Lei Y

    更新日期:2017-04-24 00:00:00

  • Optimized silicon reinforcement of carbon coatings by pulsed laser technique for superior functional biomedical surfaces fabrication.

    abstract::We report on the fabrication of silicon-reinforced carbon (C:Si) structures by combinatorial pulsed laser deposition to search for the best design for a new generation of multi-functional coated implants. The synthesized films were characterized from the morphological, structural, compositional, mechanical and microbi...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa7076

    authors: Mihailescu IN,Bociaga D,Popescu-Pelin G,Stan GE,Duta L,Socol G,Chifiriuc MC,Bleotu C,Lazar V,Husanu MA,Zgura I,Miculescu F,Negut I,Hapenciuc C

    更新日期:2017-06-01 00:00:00

  • Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    abstract::Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumu...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5082/4/4/042001

    authors: Huang G,Wang L,Wang S,Han Y,Wu J,Zhang Q,Xu F,Lu TJ

    更新日期:2012-12-01 00:00:00

  • Hydrogel-fibre composites with independent control over cell adhesion to gel and fibres as an integral approach towards a biomimetic artificial ECM.

    abstract::In the body, cells are surrounded by an interconnected mesh of insoluble, bioactive protein fibres to which they adhere in a well-controlled manner, embedded in a hydrogel-like highly hydrated matrix. True morphological and biochemical mimicry of this so-called extracellular matrix (ECM) remains a challenge but appear...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024106

    authors: Schulte VA,Hahn K,Dhanasingh A,Heffels KH,Groll J

    更新日期:2014-06-01 00:00:00

  • Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.

    abstract::Four-dimensional (4D) bioprinting of cell-laden constructs with programmable shape-morphing structures has gained increasing attention in the field of biofabrication and tissue engineering. Currently, most of the widely used materials for 4D printing, including N-isopropylacrylamide-based polymers, are not commonly us...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab39c5

    authors: Luo Y,Lin X,Chen B,Wei X

    更新日期:2019-09-13 00:00:00

  • Importance of endogenous extracellular matrix in biomechanical properties of human skin model.

    abstract::The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we char...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed5

    authors: Pillet F,Gibot L,Madi M,Rols MP,Dague E

    更新日期:2017-05-11 00:00:00

  • Biomimetic matrix fabricated by LMP-1 gene-transduced MC3T3-E1 cells for bone regeneration.

    abstract::Bone healing is regulated by multiple microenvironmental signals provided by the extracellular matrix (ECM). This study aimed to mimic the native osteoinductive microenvironment by developing an ECM using gene-transduced cells. The LIM mineralization protein-1 (LMP-1) gene was transferred to murine pre-osteoblast cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8dd1

    authors: Ma J,Guo W,Gao M,Huang B,Qi Q,Ling Z,Chen Y,Hu H,Zhou H,Yu F,Chen K,Richards G,Lin J,Zhou Z,Xiao D,Zou X

    更新日期:2017-11-14 00:00:00

  • Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs.

    abstract::A critical consideration in tissue engineering is to recapitulate the microstructural organization of native tissues that is essential to their function. Scaffold-based techniques have focused on achieving this via the contact guidance principle wherein topographical cues offered by scaffold fibers direct migration an...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab15cf

    authors: Chansoria P,Narayanan LK,Schuchard K,Shirwaiker R

    更新日期:2019-04-26 00:00:00

  • Printability study of metal ion crosslinked PEG-catechol based inks.

    abstract::In this paper we explore the printability of reversible networks formed by catechol functionalized PEG solutions and metal cations (Al3+, Fe3+ or V3+). The printability and shape fidelity were dependent on the ink composition (metal ion type, pH, PEG molecular weight) and printing parameters (extrusion pressure and pr...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab673a

    authors: Włodarczyk-Biegun MK,Paez JI,Villiou M,Feng J,Del Campo A

    更新日期:2020-04-29 00:00:00