Cell adhesion pattern created by OSTE polymers.

Abstract:

:Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry thiol-ene (OSTE) polymers to create heterogeneity on the surface by utilizing 3D printing and soft-lithography. By choosing two OSTE polymers with different functional groups, we create a pattern where only parts of the surface can facilitate cell adhesion. We also study the hydrophilic property of OSTE polymers by mixing poly(ethylene glycol) (PEG) directly with pre-polymers and plasma treatments afterwards. Moreover, we investigate the effect of functional groups' excess ratio and hydrophilic property on the cell adhesion ability of OSTE polymers. The results show that the cell adhesion ability of OSTE materials can be tuned within a wide range by the coupling effect of functional groups' excess ratio and hydrophilic property. Meanwhile, by mixing PEG with pre-polymers and undergoing oxygen plasma treatment afterward can significantly improve the hydrophilic property of OSTE polymers.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Liu W,Li Y,Ding X

doi

10.1088/1758-5090/aa669c

subject

Has Abstract

pub_date

2017-04-24 00:00:00

pages

025006

issue

2

eissn

1758-5082

issn

1758-5090

journal_volume

9

pub_type

杂志文章
  • Importance of endogenous extracellular matrix in biomechanical properties of human skin model.

    abstract::The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we char...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed5

    authors: Pillet F,Gibot L,Madi M,Rols MP,Dague E

    更新日期:2017-05-11 00:00:00

  • The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures.

    abstract::Cell cultures for tissue engineering are traditionally prepared on two-dimensional or three-dimensional scaffolds with simple pores; however, this limits mass transportation, which is necessary for cell viability and function. In this paper, an innovative method is proposed for fabricating porous scaffolds with design...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/1/015004

    authors: Liu Y,Li X,Qu X,Zhu L,He J,Zhao Q,Wu W,Li D

    更新日期:2012-03-01 00:00:00

  • Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.

    abstract::Technical limitations of traditional electrospinning make it hard to produce three-dimensional (3D) scaffolds with hierarchical pore structures. Here, porous polycaprolactone (PCL) nanofiber meshes with different nano-hydroxyapatite (nHA) concentrations were prepared by electrospinning with stainless steel mesh as the...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa5c99

    authors: Song J,Zhu G,Wang L,An G,Shi X,Wang Y

    更新日期:2017-02-14 00:00:00

  • Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system.

    abstract::To overcome the drawbacks of in vitro liver testing during drug development, numerous liver-on-a-chip models have been developed. However, current liver-on-a-chip technologies are labor-intensive, lack extracellular matrix (ECM) essential for liver cells, and lack a biliary system essential for excreting bile acids, w...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf9fa

    authors: Lee H,Chae S,Kim JY,Han W,Kim J,Choi Y,Cho DW

    更新日期:2019-01-16 00:00:00

  • Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells.

    abstract::Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/1/015005

    authors: Gruene M,Pflaum M,Deiwick A,Koch L,Schlie S,Unger C,Wilhelmi M,Haverich A,Chichkov BN

    更新日期:2011-03-01 00:00:00

  • Optimized silicon reinforcement of carbon coatings by pulsed laser technique for superior functional biomedical surfaces fabrication.

    abstract::We report on the fabrication of silicon-reinforced carbon (C:Si) structures by combinatorial pulsed laser deposition to search for the best design for a new generation of multi-functional coated implants. The synthesized films were characterized from the morphological, structural, compositional, mechanical and microbi...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa7076

    authors: Mihailescu IN,Bociaga D,Popescu-Pelin G,Stan GE,Duta L,Socol G,Chifiriuc MC,Bleotu C,Lazar V,Husanu MA,Zgura I,Miculescu F,Negut I,Hapenciuc C

    更新日期:2017-06-01 00:00:00

  • Cell patterning through inkjet printing of one cell per droplet.

    abstract::The inkjet ejection technology used in printers has been adopted and research has been conducted on manufacturing artificial tissue by patterning cells through micronozzle ejection of small droplets containing multiple cells. However, stable injection of cells has proven difficult, owing to the frequent occurrence of ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/4/045005

    authors: Yamaguchi S,Ueno A,Akiyama Y,Morishima K

    更新日期:2012-12-01 00:00:00

  • Enhanced mechanical and electrical properties of heteroscaled hydrogels infused with aqueous-dispersible hybrid nanofibers.

    abstract::Despite the widespread use as platforms for various biomedical applications, engineering hydrogels to impart multifunctionality and control physical properties, while closely mimicking the native cellular microenvironment, is still a significant challenge. Herein, nanofibers consisting of hydrophilic and photocrosslin...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab5385

    authors: Kim S,Cha C

    更新日期:2019-12-19 00:00:00

  • Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication.

    abstract::Advances in three-dimensional cell cultures offer new opportunities in biomedical research and drug development. However, there are still challenges to overcome, including the lack of reliability, repeatability and complexity of tissues obtained by these techniques. In this study, we describe a new bioprinting system ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf625

    authors: da Conceicao Ribeiro R,Pal D,Ferreira AM,Gentile P,Benning M,Dalgarno K

    更新日期:2018-12-27 00:00:00

  • Biomimetic matrix fabricated by LMP-1 gene-transduced MC3T3-E1 cells for bone regeneration.

    abstract::Bone healing is regulated by multiple microenvironmental signals provided by the extracellular matrix (ECM). This study aimed to mimic the native osteoinductive microenvironment by developing an ECM using gene-transduced cells. The LIM mineralization protein-1 (LMP-1) gene was transferred to murine pre-osteoblast cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8dd1

    authors: Ma J,Guo W,Gao M,Huang B,Qi Q,Ling Z,Chen Y,Hu H,Zhou H,Yu F,Chen K,Richards G,Lin J,Zhou Z,Xiao D,Zou X

    更新日期:2017-11-14 00:00:00

  • Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    abstract::Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035011

    authors: Koppes AN,Kamath M,Pfluger CA,Burkey DD,Dokmeci M,Wang L,Carrier RL

    更新日期:2016-08-22 00:00:00

  • Three-dimensional inkjet biofabrication based on designed images.

    abstract::Tissue engineering has been developed with the ultimate aim of manufacturing human organs, but success has been limited to only thin tissues and tissues with no significant structures. In order to construct more complicated tissues, we have developed a three-dimensional (3D) fabrication technology in which 3D structur...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/3/034113

    authors: Arai K,Iwanaga S,Toda H,Genci C,Nishiyama Y,Nakamura M

    更新日期:2011-09-01 00:00:00

  • Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche.

    abstract::Nerve tissues contain hierarchically ordered nerve fibers, while each of the nerve fibers has nano-oriented fibrous extracellular matrix and a core-shell structure of tubular myelin sheath with elongated axons encapsulated. Here, we report, for the first time, a ready approach to fabricate biomimetic nerve fibers whic...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab860d

    authors: Chen S,Wu C,Liu A,Wei D,Xiao Y,Guo Z,Chen L,Zhu Y,Sun J,Luo H,Fan H

    更新日期:2020-05-12 00:00:00

  • Cell sheet technology and cell patterning for biofabrication.

    abstract::We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and compose...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5082/1/2/022002

    authors: Hannachi IE,Yamato M,Okano T

    更新日期:2009-06-01 00:00:00

  • Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    abstract::Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumu...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5082/4/4/042001

    authors: Huang G,Wang L,Wang S,Han Y,Wu J,Zhang Q,Xu F,Lu TJ

    更新日期:2012-12-01 00:00:00

  • Shear stress induced by fluid flow produces improvements in tissue-engineered cartilage.

    abstract::Tissue engineering aims to create implantable biomaterials for the repair and regeneration of damaged tissues. In vitro tissue engineering is generally based on static culture, which limits access to nutrients and lacks mechanical signaling. Using shear stress is controversial because in some cases it can lead to cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aba412

    authors: Salinas EY,Aryaei A,Paschos N,Berson E,Kwon H,Hu JC,Athanasiou KA

    更新日期:2020-08-10 00:00:00

  • Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.

    abstract::Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab19fd

    authors: Cidonio G,Alcala-Orozco CR,Lim KS,Glinka M,Mutreja I,Kim YH,Dawson JI,Woodfield TBF,Oreffo ROC

    更新日期:2019-06-12 00:00:00

  • Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    abstract::Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel st...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/4/045004

    authors: Yuan H,Zhou Q,Li B,Bao M,Lou X,Zhang Y

    更新日期:2015-11-05 00:00:00

  • Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting.

    abstract::Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf44a

    authors: You F,Chen X,Cooper DML,Chang T,Eames BF

    更新日期:2018-12-27 00:00:00

  • 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    abstract::In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6370

    authors: Guo T,Holzberg TR,Lim CG,Gao F,Gargava A,Trachtenberg JE,Mikos AG,Fisher JP

    更新日期:2017-04-12 00:00:00

  • Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    abstract::In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate bl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/2/025009

    authors: Marchioli G,van Gurp L,van Krieken PP,Stamatialis D,Engelse M,van Blitterswijk CA,Karperien MB,de Koning E,Alblas J,Moroni L,van Apeldoorn AA

    更新日期:2015-05-28 00:00:00

  • In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications.

    abstract::Electrospun fibers of natural polymers are desirable for biomedical applications such as tissue engineering. Crosslinking of electrospun fibers of natural polymers is needed to prevent dissolution in water and to enhance mechanical strength. In this study, an in situ UV-crosslinking method was developed for crosslinki...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/3/035008

    authors: Lin WH,Tsai WB

    更新日期:2013-09-01 00:00:00

  • Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

    abstract::One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of co...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/025003

    authors: Park JH,Jung JW,Kang HW,Cho DW

    更新日期:2014-06-01 00:00:00

  • Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.

    abstract::A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa663b

    authors: Lin H,Li Q,Lei Y

    更新日期:2017-04-24 00:00:00

  • The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.

    abstract::We previously developed the Bio-Pick, Place, and Perfuse (Bio-P3) instrument to fabricate large perfusable tissue constructs by stacking and aligning scaffold-free living microtissues with integrated lumens. The Bio-P3 required an actuating mechanism to manipulate living microtissues of various sizes and shapes that a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025015

    authors: Ip BC,Cui F,Tripathi A,Morgan JR

    更新日期:2016-05-25 00:00:00

  • Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.

    abstract::A bio-inspired hydrogel for 3D bioprinting of soft free-standing neural tissues is presented. The novel filler-free bioinks were designed by combining natural polymers for extracellular matrix biomimicry with synthetic polymers to endow desirable rheological properties for 3D bioprinting. Crosslinking of thiolated Plu...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab02c9

    authors: Haring AP,Thompson EG,Tong Y,Laheri S,Cesewski E,Sontheimer H,Johnson BN

    更新日期:2019-02-25 00:00:00

  • Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications.

    abstract::We demonstrate a simple, accurate and versatile method to manipulate Parylene C, a material widely known for its high biocompatibility, and transform it to a substrate that can effectively control the cellular microenvironment and consequently affect the morphology and function of the cells in vitro. The Parylene C sc...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/025004

    authors: Trantidou T,Rao C,Barrett H,Camelliti P,Pinto K,Yacoub MH,Athanasiou T,Toumazou C,Terracciano CM,Prodromakis T

    更新日期:2014-06-01 00:00:00

  • Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments.

    abstract::As an alternative to conventional cell culture and animal testing, an organ-on-a-chip is applied to study the biological phenomena of organ development and disease, as well as the interactions between human tissues and external stimuli such as chemicals, forces and electricity. The pattern design of a microfluidic cha...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaa900

    authors: Mao M,He J,Lu Y,Li X,Li T,Zhou W,Li D

    更新日期:2018-02-05 00:00:00

  • Enhancing cell packing in buckyballs by acoustofluidic activation.

    abstract::How to pack materials into well-defined volumes efficiently has been a longstanding question of interest to physicists, material scientists, and mathematicians as these materials have broad applications ranging from shipping goods in commerce to seeds in agriculture and to spheroids in tissue engineering. How many mar...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab76d9

    authors: Ren T,Steiger W,Chen P,Ovsianikov A,Demirci U

    更新日期:2020-03-31 00:00:00

  • High throughput miniature drug-screening platform using bioprinting technology.

    abstract::In the pharmaceutical industry, new drugs are tested to find appropriate compounds for therapeutic purposes for contemporary diseases. Unfortunately, novel compounds emerge at expensive prices and current target evaluation processes have limited throughput, thus leading to an increase of cost and time for drug develop...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/3/035001

    authors: Rodríguez-Dévora JI,Zhang B,Reyna D,Shi ZD,Xu T

    更新日期:2012-09-01 00:00:00