Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

Abstract:

:Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Yuan H,Zhou Q,Li B,Bao M,Lou X,Zhang Y

doi

10.1088/1758-5090/7/4/045004

subject

Has Abstract

pub_date

2015-11-05 00:00:00

pages

045004

issue

4

eissn

1758-5082

issn

1758-5090

journal_volume

7

pub_type

杂志文章
  • Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.

    abstract::Three-dimensional (3D) printed poly(ε-caprolactone) (PCL) based scaffolds have being proposed for different tissue engineering applications. This study addresses the design and fabrication of 3D PCL constructs with different struts alignments at 90°, 45° and 90° with offset. The morphology and the mechanical behavior ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa698e

    authors: Ribeiro JFM,Oliveira SM,Alves JL,Pedro AJ,Reis RL,Fernandes EM,Mano JF

    更新日期:2017-05-11 00:00:00

  • Trapping cell spheroids and organoids using digital acoustofluidics.

    abstract::The precise positioning and arrangement of cell spheroids and organoids are critical to reconstructing complex tissue architecture for tissue engineering and regenerative medicine. Here, we present a digital acoustofluidic method to manipulate cell spheroids and organoids with unprecedented dexterity. By introducing l...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab9582

    authors: Cai H,Wu Z,Ao Z,Nunez A,Chen B,Jiang L,Bondesson M,Guo F

    更新日期:2020-07-01 00:00:00

  • Enhanced mechanical and electrical properties of heteroscaled hydrogels infused with aqueous-dispersible hybrid nanofibers.

    abstract::Despite the widespread use as platforms for various biomedical applications, engineering hydrogels to impart multifunctionality and control physical properties, while closely mimicking the native cellular microenvironment, is still a significant challenge. Herein, nanofibers consisting of hydrophilic and photocrosslin...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab5385

    authors: Kim S,Cha C

    更新日期:2019-12-19 00:00:00

  • Biomimetic matrix fabricated by LMP-1 gene-transduced MC3T3-E1 cells for bone regeneration.

    abstract::Bone healing is regulated by multiple microenvironmental signals provided by the extracellular matrix (ECM). This study aimed to mimic the native osteoinductive microenvironment by developing an ECM using gene-transduced cells. The LIM mineralization protein-1 (LMP-1) gene was transferred to murine pre-osteoblast cell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8dd1

    authors: Ma J,Guo W,Gao M,Huang B,Qi Q,Ling Z,Chen Y,Hu H,Zhou H,Yu F,Chen K,Richards G,Lin J,Zhou Z,Xiao D,Zou X

    更新日期:2017-11-14 00:00:00

  • Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting.

    abstract::Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf44a

    authors: You F,Chen X,Cooper DML,Chang T,Eames BF

    更新日期:2018-12-27 00:00:00

  • The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.

    abstract::We previously developed the Bio-Pick, Place, and Perfuse (Bio-P3) instrument to fabricate large perfusable tissue constructs by stacking and aligning scaffold-free living microtissues with integrated lumens. The Bio-P3 required an actuating mechanism to manipulate living microtissues of various sizes and shapes that a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025015

    authors: Ip BC,Cui F,Tripathi A,Morgan JR

    更新日期:2016-05-25 00:00:00

  • Neural priming of adipose-derived stem cells by cell-imprinted substrates.

    abstract::Cell-imprinting technology is a novel method for directing stem cell fate using substrates molded from target cells. Here, we fabricated and studied cell-imprinted substrates for neural priming in human adipose-derived stem cells in the absence of chemical cues. We molded polydimethylsiloxane (PDMS) silicone substrate...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abc66f

    authors: Ghazali ZS,Eskandari M,Bonakdar S,Renaud P,Mashinchian O,Shalileh S,Bonini F,Uckay I,Preynat-Seauve O,Braschler T

    更新日期:2020-10-30 00:00:00

  • 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    abstract::Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, ...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5090/9/1/012001

    authors: Li YC,Zhang YS,Akpek A,Shin SR,Khademhosseini A

    更新日期:2016-12-02 00:00:00

  • Design of 3D printed insert for hanging culture of Caco-2 cells.

    abstract::A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/1/015003

    authors: Shen C,Meng Q,Zhang G

    更新日期:2014-12-17 00:00:00

  • Development of TRACER: tissue roll for analysis of cellular environment and response.

    abstract::The tumour microenvironment is heterogeneous and consists of multiple cell types, variable extracellular matrix (ECM) composition, and contains cell-defined gradients of small molecules, oxygen, nutrients and waste. Emerging in vitro cell culture systems that attempt to replicate these features often fail to incorpora...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045008

    authors: Rodenhizer D,Cojocari D,Wouters BG,McGuigan AP

    更新日期:2016-10-18 00:00:00

  • On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure.

    abstract::Human induced pluripotent stem cells (hiPSCs) can be differentiated at high efficiency into cells of a targeting type but the resulting cell population has to be of high purity for clinical therapies to avoid teratomas. Herein, we report a microfluidic device with integrated and surface functionalised fishnet-like str...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035017

    authors: Li X,Yu L,Li J,Minami I,Nakajima M,Noda Y,Kotera H,Liu L,Chen Y

    更新日期:2016-09-08 00:00:00

  • Optimizing the biofabrication process of omentum-based scaffolds for engineering autologous tissues.

    abstract::Omentum-based matrices fabricated by decellularization have the potential to serve as autologous scaffolds for tissue engineering. Transplantation of such scaffolds prepared from the patient's own biomaterial may reduce the immunogenic response after transplantation. Recently we reported on the potential of the decell...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/3/035023

    authors: Soffer-Tsur N,Shevach M,Shapira A,Peer D,Dvir T

    更新日期:2014-09-01 00:00:00

  • Autonomous spheroid formation by culture plate compartmentation.

    abstract::Scaffold-free 3D cell cultures (e.g. pellet cultures) are widely used in medical science, including cartilage regeneration. Their drawbacks are high time/reagent consumption and lack of early readout parameters. While optimisation was achieved by automation or simplified spheroid generation, most culture systems remai...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abe186

    authors: Fürsatz M,Gerges P,Wolbank S,Nürnberger S

    更新日期:2021-01-29 00:00:00

  • A simple method for producing multiple copies of controlled release small molecule microarrays for cell-based screening.

    abstract::Traditional drug discovery involves the screening of lead compounds from a chemical library by using cell-based high throughput screening (HTS) procedures. This has created a demand for the development of cell-based microarray chips for HTS of compounds. Although several cell-based microarray devices and procedures fo...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/9/1/011001

    authors: Fujita S,Onuki-Nagasaki R,Ikuta K,Hara Y

    更新日期:2016-12-05 00:00:00

  • Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement.

    abstract::Degeneration of the intervertebral disc (IVD) represents a significant musculoskeletal disease burden. Tissue engineering has proposed several strategies comprising the use of biodegradable materials to prepare scaffolds that can present mechanical properties similar to those of native IVD tissues. However, this might...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/1/015008

    authors: van Uden S,Silva-Correia J,Correlo VM,Oliveira JM,Reis RL

    更新日期:2015-01-21 00:00:00

  • Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication.

    abstract::Advances in three-dimensional cell cultures offer new opportunities in biomedical research and drug development. However, there are still challenges to overcome, including the lack of reliability, repeatability and complexity of tissues obtained by these techniques. In this study, we describe a new bioprinting system ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf625

    authors: da Conceicao Ribeiro R,Pal D,Ferreira AM,Gentile P,Benning M,Dalgarno K

    更新日期:2018-12-27 00:00:00

  • Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

    abstract::One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of co...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/025003

    authors: Park JH,Jung JW,Kang HW,Cho DW

    更新日期:2014-06-01 00:00:00

  • Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments.

    abstract::As an alternative to conventional cell culture and animal testing, an organ-on-a-chip is applied to study the biological phenomena of organ development and disease, as well as the interactions between human tissues and external stimuli such as chemicals, forces and electricity. The pattern design of a microfluidic cha...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaa900

    authors: Mao M,He J,Lu Y,Li X,Li T,Zhou W,Li D

    更新日期:2018-02-05 00:00:00

  • Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications.

    abstract::We demonstrate a simple, accurate and versatile method to manipulate Parylene C, a material widely known for its high biocompatibility, and transform it to a substrate that can effectively control the cellular microenvironment and consequently affect the morphology and function of the cells in vitro. The Parylene C sc...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/025004

    authors: Trantidou T,Rao C,Barrett H,Camelliti P,Pinto K,Yacoub MH,Athanasiou T,Toumazou C,Terracciano CM,Prodromakis T

    更新日期:2014-06-01 00:00:00

  • Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.

    abstract::Four-dimensional (4D) bioprinting of cell-laden constructs with programmable shape-morphing structures has gained increasing attention in the field of biofabrication and tissue engineering. Currently, most of the widely used materials for 4D printing, including N-isopropylacrylamide-based polymers, are not commonly us...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab39c5

    authors: Luo Y,Lin X,Chen B,Wei X

    更新日期:2019-09-13 00:00:00

  • Enhancing cell packing in buckyballs by acoustofluidic activation.

    abstract::How to pack materials into well-defined volumes efficiently has been a longstanding question of interest to physicists, material scientists, and mathematicians as these materials have broad applications ranging from shipping goods in commerce to seeds in agriculture and to spheroids in tissue engineering. How many mar...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab76d9

    authors: Ren T,Steiger W,Chen P,Ovsianikov A,Demirci U

    更新日期:2020-03-31 00:00:00

  • Printability study of metal ion crosslinked PEG-catechol based inks.

    abstract::In this paper we explore the printability of reversible networks formed by catechol functionalized PEG solutions and metal cations (Al3+, Fe3+ or V3+). The printability and shape fidelity were dependent on the ink composition (metal ion type, pH, PEG molecular weight) and printing parameters (extrusion pressure and pr...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab673a

    authors: Włodarczyk-Biegun MK,Paez JI,Villiou M,Feng J,Del Campo A

    更新日期:2020-04-29 00:00:00

  • Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.

    abstract::Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab19fd

    authors: Cidonio G,Alcala-Orozco CR,Lim KS,Glinka M,Mutreja I,Kim YH,Dawson JI,Woodfield TBF,Oreffo ROC

    更新日期:2019-06-12 00:00:00

  • A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation.

    abstract::Tissue engineering based on building blocks is an emerging method to fabricate 3D tissue constructs. This method requires depositing and assembling building blocks (cell-laden microgels) at high throughput. The current technologies (e.g., molding and photolithography) to fabricate microgels have throughput challenges ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/2/1/014105

    authors: Xu F,Moon SJ,Emre AE,Turali ES,Song YS,Hacking SA,Nagatomi J,Demirci U

    更新日期:2010-03-01 00:00:00

  • An in vitro vascular chip using 3D printing-enabled hydrogel casting.

    abstract::An important unsolved challenge in tissue engineering has been the inability to replicate the geometry and function of vascular networks and blood vessels. Here, we engineer a user-defined 3D microfluidic vascular channel using 3D printing-enabled hydrogel casting. First, a hollow L-shaped channel is developed using a...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035015

    authors: Yang L,Shridhar SV,Gerwitz M,Soman P

    更新日期:2016-08-26 00:00:00

  • Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.

    abstract::Calcium alginate hydrogels are widely used as biocompatible materials in a substantial number of biomedical applications. This paper reports on a hybrid 3D printing and electrodeposition approach for forming 3D calcium alginate hydrogels in a controllable manner. Firstly, a specific 3D hydrogel printing system is deve...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed8

    authors: Shang W,Liu Y,Wan W,Hu C,Liu Z,Wong CT,Fukuda T,Shen Y

    更新日期:2017-06-07 00:00:00

  • Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation.

    abstract::In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate bl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/2/025009

    authors: Marchioli G,van Gurp L,van Krieken PP,Stamatialis D,Engelse M,van Blitterswijk CA,Karperien MB,de Koning E,Alblas J,Moroni L,van Apeldoorn AA

    更新日期:2015-05-28 00:00:00

  • Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.

    abstract::Technical limitations of traditional electrospinning make it hard to produce three-dimensional (3D) scaffolds with hierarchical pore structures. Here, porous polycaprolactone (PCL) nanofiber meshes with different nano-hydroxyapatite (nHA) concentrations were prepared by electrospinning with stainless steel mesh as the...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa5c99

    authors: Song J,Zhu G,Wang L,An G,Shi X,Wang Y

    更新日期:2017-02-14 00:00:00

  • Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds.

    abstract::Plant cell cultures produce active agents for pharmaceuticals, food and cosmetics. However, up to now process control for plant cell suspension cultures is challenging. A positive impact of cell immobilization, such as encapsulation in hydrogel beads, on secondary metabolites production has been reported for several p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8854

    authors: Seidel J,Ahlfeld T,Adolph M,Kümmritz S,Steingroewer J,Krujatz F,Bley T,Gelinsky M,Lode A

    更新日期:2017-11-14 00:00:00

  • Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells.

    abstract::Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/1/015005

    authors: Gruene M,Pflaum M,Deiwick A,Koch L,Schlie S,Unger C,Wilhelmi M,Haverich A,Chichkov BN

    更新日期:2011-03-01 00:00:00