A Golgi study of the plasticity of dendritic spines in the hypothalamic ventromedial nucleus during the estrous cycle of female rats.

Abstract:

:Estradiol-induced plasticity involves changes in dendritic spine density and in the relative proportions of the different dendritic spine types that influence neurons and neural circuits. Such events affect brain structures that control the timing of neuroendocrine and behavioral processes, influencing both reproductive and cognitive functions during the estrous cycle. Accordingly, to investigate the dendritic spine-related plastic changes that may affect the neural processes involved in mating, estradiol-mediated dendritic spine plasticity was studied in type II cells situated in the ventrolateral portion of the ventromedial hypothalamic nucleus (VMN) of female, adult rats. The rats were assigned to four different groups (n=6) in function of their stage in the estrous cycle: proestrus, estrus, metaestrus, and diestrus. Dendritic spine density and the proportions of the different spine types on type II neurons were analyzed in the ventrolateral region of the VMN of these animals. Dendritic spine density on primary dendrites of VMN type II neurons was significantly lower in metaestrus than in diestrus, proestrus and estrus (with no differences between these latter stages). However, a significant variation in the proportional density of the different spine types was found, with a higher proportion of thin spines in diestrus, proestrus and estrus than in metaestrus. Likewise, a higher proportion of mushroom spines was seen in diestrus and proestrus than in metaestrus, and a higher proportion of stubby spines in estrus than in diestrus and metaestrus. Very few branched spines were found during proestrus and they were not detected during estrus or metaestrus. The different types of dendritic spines in non-projection neurons of the VMN could serve to maintain greater synaptic excitatory activity when receptivity and estradiol levels are maximal. However, they may also fulfill an additional functional role when receptivity and estradiol decline. To date specific roles of the different types of spines in neural hypothalamic activity during the estrous cycle remain unknown and they clearly deserve further study.

journal_name

Neuroscience

journal_title

Neuroscience

authors

González-Burgos I,Velázquez-Zamora DA,González-Tapia D,Cervantes M

doi

10.1016/j.neuroscience.2015.04.019

subject

Has Abstract

pub_date

2015-07-09 00:00:00

pages

74-80

eissn

0306-4522

issn

1873-7544

pii

S0306-4522(15)00350-4

journal_volume

298

pub_type

杂志文章