Characterisation of clinical and newly fabricated meshes for pelvic organ prolapse repair.

Abstract:

:Clinical meshes used in pelvic organ prolapse (POP) repair are predominantly manufactured from monofilament polypropylene (PP). Complications from the use of these meshes in transvaginal kits, including mesh exposure and pain, have prompted two public health notifications by the FDA. The aim of this study was to compare several clinical PP POP meshes to new fabricated POP meshes, knitted from alternative polymers, for their mechanical properties using standard and clinically relevant multi-axial testing methods. Five new meshes were warp knitted to different architectures and weights from polyamide and polyetheretherketone monofilaments. A composite mesh of a polyamide mesh incorporating a gelatin layer was also fabricated to enable the potential delivery of cells on these meshes. Meshes were assessed for their structural characteristics and mechanical properties, using uniaxial stiffness, permanent strain, bending rigidity and multi-axial burst strength methods. Results were compared to three clinical urogynaecological polypropylene meshes: Polyform®, Gynemesh(TM)PS, and IntePro®. New fabricated meshes were uniaxially less stiff (less than 0.24 N/mm and 1.20 N/mm in toe and linear regions, respectively) than the Gynemesh (0.48 N/mm and 2.08 N/mm in toe and linear regions, respectively) and IntePro (0.57 N/mm in toe region) clinical meshes, with the gelatin coated PA mesh exhibiting lower permanent strain than Polyform clinical mesh (8.1% vs. 23.5%). New meshes had lower burst stiffness than Polyform (less than 16.9 N/mm for new meshes and 26.6N/mm for Polyform). Within the new mesh prototypes, the PA meshes, either uncoated (4.7-5.7 μN m) or with gelatin coating (16.7 μN m) possessed lower bending rigidity than both Polyform and Gynemesh (46.2 μN m and 36.4 μN m, respectively). The new fabricated mesh designs were of similar architecture, but with some improved mechanical properties, compared to clinical POP meshes. Multi-axial analysis of new and clinical mesh designs provides greater discriminatory power in analysing mesh mechanical properties for clinical applications.

authors

Edwards SL,Werkmeister JA,Rosamilia A,Ramshaw JA,White JF,Gargett CE

doi

10.1016/j.jmbbm.2013.04.002

subject

Has Abstract

pub_date

2013-07-01 00:00:00

pages

53-61

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(13)00123-9

journal_volume

23

pub_type

杂志文章
  • Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications.

    abstract::Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fin...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.12.039

    authors: Ren F,Zhu W,Chu K

    更新日期:2016-07-01 00:00:00

  • Fabrication and characterization of poly(vinyl alcohol)-TiO2 nanocomposite films for orthopedic applications.

    abstract::Poly(vinyl alcohol) (PVA) is reinforced with TiO2 nanoparticles in order to enhance thermo-mechanical stabilities, surface characteristics and osteoblastic cell adhesion. PVA-TiO2 nanocomposite films with desirable mechanical, thermal and biocompatible properties are fabricated through solution casting method followed...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.06.009

    authors: Mohanapriya S,Mumjitha M,PurnaSai K,Raj V

    更新日期:2016-10-01 00:00:00

  • Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    abstract::In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and e...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.12.007

    authors: Wei Q,Wang Y,Li X,Yang M,Chai W,Wang K,zhang Y

    更新日期:2016-04-01 00:00:00

  • Effects of homogenization technique and introduction of interfaces in a multiscale approach to predict the elastic properties of arthropod cuticle.

    abstract::In this paper the mechanical response of the arthropod cuticle is evaluated by means of a multiscale approach including interface effects. The cuticle's elastic behavior is modeled at the nano and the micro scales by mean-field homogenization techniques. With respect to the work of Nikolov et al. (2011), the idea has ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.04.003

    authors: Lhadi S,Ahzi S,Rémond Y,Nikolov S,Fabritius H

    更新日期:2013-07-01 00:00:00

  • UV damage and sun care: deciphering mechanics of skin to develop next generation therapies.

    abstract::Some ultraviolet radiation (UV) is essential to the body as it stimulates the production of vitamin D, yet overexposure has deleterious consequences for the skin. UV induces structural and cellular changes across the different layers of skin tissue leading to mechanical and oxidative stress. Both are critical paramete...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.02.008

    authors: Levi K

    更新日期:2013-12-01 00:00:00

  • Imprecise knowledge based design and development of titanium alloys for prosthetic applications.

    abstract::Imprecise knowledge on the composition-processing-microstructure-property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthoped...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.08.039

    authors: Datta S,Mahfouf M,Zhang Q,Chattopadhyay PP,Sultana N

    更新日期:2016-01-01 00:00:00

  • In vitro experimental and numerical study on biomechanics and stability of a novel adjustable hemipelvic prosthesis.

    abstract::Hemipelvic prostheses are used to reconstruct the damaged pelvis due to bone tumors and traumas. However, biomechanical properties of the reconstructed pelvis remain unclear, causing difficulties to implant development and prediction of surgical outcome. In this study, a novel adjustable hemipelvic prosthesis for the ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.10.036

    authors: Liu D,Jiang J,Wang L,Liu J,Jin Z,Gao L,Hua Y,Cai Z,Hua Z

    更新日期:2019-02-01 00:00:00

  • Tensile biomechanical properties and constitutive parameters of human corneal stroma extracted by SMILE procedure.

    abstract::The biomechanical behavior of human corneal stroma under uniaxial tension was investigated by the experimental analysis of cornea stromal lenticules taken out by corneal refractive surgery. Uniaxial tests were conducted to determine their stress-strain relationship and tensile strength. The Gasser-Ogden-Holzapfel (GOH...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.05.042

    authors: Xiang Y,Shen M,Xue C,Wu D,Wang Y

    更新日期:2018-09-01 00:00:00

  • In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities.

    abstract::Silver nanoparticles embedded within a nanofibrous polymer matrix have significant attention in recent years as an antimicrobial wound dressing materials. Herein, we have fabricated a novel Ag-polyurethane-zein hybrid nanofibrous scaffold for wound dressing applications. AgNPs were synthesized in-situ via reduction of...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.07.034

    authors: Maharjan B,Joshi MK,Tiwari AP,Park CH,Kim CS

    更新日期:2017-01-01 00:00:00

  • Finite Element simulation of buckling-induced vein tortuosity and influence of the wall constitutive properties.

    abstract::The mechanisms giving rise to vein tortuosity, which is often associated with varicosis, are poorly understood. Recent works suggest that significant biological changes in the wall of varicose veins may precede the mechanical aspects of the disease. To test the hypothesis of tortuosity being a consequence of these cha...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.05.006

    authors: Badel P,Rohan CP,Avril S

    更新日期:2013-10-01 00:00:00

  • Preparation of low shrinkage methacrylate-based resin system without Bisphenol A structure by using a synthesized dendritic macromer (G-IEMA).

    abstract::With the growing attention on estrogenic effect of Bisphenol A (BPA), the application of BPA derivatives like Bis-GMA in dental materials has also been doubted. In this research, new BPA free dental resin systems were prepared with synthesized dendritic macromer G-IEMA, UDMA, and TEGDMA. Physicochemical properties, su...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.03.012

    authors: Yu B,Liu F,He J

    更新日期:2014-07-01 00:00:00

  • Single and reciprocal friction testing of micropatterned surfaces for orthopedic device design.

    abstract::The use of micropatterning to create uniform surface morphologies has been cited as yielding improvements in the coefficient of friction during high velocity sliding contact. Studies have not been preformed to determine if these micropatterns could also be useful in biomedical applications, such as total joint replace...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.08.022

    authors: Mitchell N,Eljach C,Lodge B,Sharp JL,Desjardins JD,Kennedy MS

    更新日期:2012-03-01 00:00:00

  • Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering.

    abstract::The structure, composition and morphology of a radio-frequency (RF) magnetron sputter-deposited dense nano-hydroxyapatite (HA) coating that was deposited on the surface of an AZ31 magnesium alloy were characterized using AFM, SEM, EDX and XRD. The results obtained from SEM and XRD experiments revealed that the bias ap...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.02.025

    authors: Surmeneva MA,Tyurin AI,Mukhametkaliyev TM,Pirozhkova TS,Shuvarin IA,Syrtanov MS,Surmenev RA

    更新日期:2015-06-01 00:00:00

  • Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

    abstract::Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platele...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.05.010

    authors: Murr LE,Amato KN,Li SJ,Tian YX,Cheng XY,Gaytan SM,Martinez E,Shindo PW,Medina F,Wicker RB

    更新日期:2011-10-01 00:00:00

  • Assessment of a long-term in vitro model to characterize the mechanical behavior and macrophage-mediated degradation of a novel, degradable, electrospun poly-urethane vascular graft.

    abstract::An assessment tool to evaluate the degradation of biodegradable materials in a more physiological environment is still needed. Macrophages are critical players in host response, remodeling and degradation. In this study, a cell culture model using monocyte-derived primary macrophages was established to study the degra...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104077

    authors: Enayati M,Puchhammer S,Iturri J,Grasl C,Kaun C,Baudis S,Walter I,Schima H,Liska R,Wojta J,Toca-Herrera JL,Podesser BK,Bergmeister H

    更新日期:2020-12-01 00:00:00

  • Prediction of cross section fracture path of cortical bone through nanoindentation array.

    abstract::Although great progresses in the fracture mechanisms and deformation behaviors of cortical bones have been achieved, the effective methods to predict the surface fracture path of cortical bones are still difficult. By using depth-sensing nanoindentation measurement technique, the hardness distribution map of cortical ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104303

    authors: Ma Z,Qiang Z,Zeng K,Xiao J,Zhou L,Zu L,Zhao H,Ren L

    更新日期:2021-01-20 00:00:00

  • Cutting mechanics of wood by beetle larval mandibles.

    abstract::Wood boring is a feature of several insect species and is a major cause of severe and irreparable damage to trees. Adult females typically deposit their eggs on the stem surface under bark scales. The emerging hatchlings live within wood during their larval phase, avoiding possible predation, whilst continually boring...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104027

    authors: Kundanati L,Chahare NR,Jaddivada S,Karkisaval AG,Sridhar R,Pugno NM,Gundiah N

    更新日期:2020-12-01 00:00:00

  • Nano-indentation on amorphous calcium phosphate splats: effect of droplet size on mechanical properties.

    abstract::Droplet processing technologies and many biological processes use disk-like or hemispherical shapes for construction or the design of surfaces. The ability to tune the characteristics and properties of a surface is important at the micro- and nano-scale. The influence of size on the mechanical properties is presently ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.07.014

    authors: Saber-Samandari S,Gross KA

    更新日期:2012-12-01 00:00:00

  • Modeling ultrasonic wave propagation in a dental implant - Bone system.

    abstract::The evolution of the bone-implant interface reflects the implant osseointegration and bond strength, thereby determining the overall implant stability in the jawbone. Quantitative ultrasound represents a promising alternative technique to characterize the interfacial integrity, precisely due to the fact that those wav...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103547

    authors: Dorogoy A,Haïat G,Shemtov-Yona K,Rittel D

    更新日期:2020-03-01 00:00:00

  • Evaluation of surface roughness, hardness and elastic modulus of nanoparticle containing light-polymerized denture glaze materials.

    abstract:STATEMENT OF PROBLEM:The surface hardness and roughness of different glaze materials for denture base acrylic resins have not been well reported. PURPOSE:The purpose of the study was to measure the surfaces hardness, elastic modulus and surface roughness of 5 different light-polymerized glaze materials for poly methyl...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103601

    authors: Choi JJE,Uy CE,Ramani RS,Waddell JN

    更新日期:2020-03-01 00:00:00

  • Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application.

    abstract::Tissue engineering is a field which aims to regenerate damaged tissues by enhancing tissue growth through the porous architecture of the scaffolds which is desired to mimic the human cancellous bone. Mg-based scaffolds are gaining importance in the field of tissue engineering owing to its potential application as a bi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.02.010

    authors: Singh S,Vashisth P,Shrivastav A,Bhatnagar N

    更新日期:2019-06-01 00:00:00

  • The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect.

    abstract::The shape memory effect (SME) has long been the focus of interest of many research groups that have studied many facets of it, yet to the authors' knowledge some molecular parameters, such as the molecular weight, have been skipped. Thus, the aim of this work is to offer further insight into the shape memory effect, b...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.04.027

    authors: Petisco-Ferrero S,Fernández J,Fernández San Martín MM,Santamaría Ibarburu PA,Sarasua Oiz JR

    更新日期:2016-08-01 00:00:00

  • Comparison of splinted and non-splinted superstructures of three implants placed in a mandibular distal extension model with missing teeth using modal analysis.

    abstract::This study evaluated the effects of two types of superstructures (splinted crown and non-splinted crown) on four vibration characteristics (natural frequency, damping ratio (DAR), vectors in antiphase, maximum displacement (MDP)) by using modal analysis. These structures were fabricated on three implants placed in the...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104050

    authors: Sasaki T,Nakata H,Suzuki A,Hada T,Kasugai S,Kuroda S

    更新日期:2020-12-01 00:00:00

  • Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: fatigue performance and stress distribution.

    abstract::This study compared the fatigue performance and the stress distribution of endodontically treated molars restored with endocrowns obtained with lithium disilicate glass-ceramic or a polymer-infiltrated ceramic network, both processed by CAD-CAM, and direct composite restorations. Forty-eight human mandibular molars we...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103401

    authors: Dartora G,Rocha Pereira GK,Varella de Carvalho R,Zucuni CP,Valandro LF,Cesar PF,Caldas RA,Bacchi A

    更新日期:2019-12-01 00:00:00

  • Mechanical properties and adaptations of some less familiar bony tissues.

    abstract::This review attempts to show the bone community that there are many ways of being a 'bone', and that the range of mechanical properties of bone material is much greater than is conventionally thought to be the case. However the structure-function relationships have in many cases hardly moved beyond mere assertion. The...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章,评审

    doi:10.1016/j.jmbbm.2010.03.002

    authors: Currey JD

    更新日期:2010-07-01 00:00:00

  • Nanomechanical properties of human skin and introduction of a novel hair indenter.

    abstract::The mechanical resistance of the stratum corneum, the outermost layer of skin, to deformation has been evaluated at different length scales using Atomic Force Microscopy. Nanomechanical surface mapping was first conducted using a sharp silicon tip and revealed that Young׳s modulus of the stratum corneum varied over th...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.014

    authors: Álvarez-Asencio R,Wallqvist V,Kjellin M,Rutland MW,Camacho A,Nordgren N,Luengo GS

    更新日期:2016-02-01 00:00:00

  • Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.

    abstract::Bone is a complex material showing a hierarchical and porous structure but also a natural ability to remodel thanks to cells sensitive to fluid flows. Based on these characteristics, a multiscale numerical model has been developed in order to represent the bone response under mechanical solicitation. It relies on the ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.12.015

    authors: Perrin E,Bou-Saïd B,Massi F

    更新日期:2019-03-01 00:00:00

  • Modeling failure of soft anisotropic materials with application to arteries.

    abstract::The arterial wall is a composite where the preferred orientation of collagen fibers induces anisotropy. Though the hyperelastic theories of fiber-reinforced composites reached a high level of sophistication and showed a reasonable correspondence with the available experimental data they are short of the failure descri...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.01.002

    authors: Volokh KY

    更新日期:2011-11-01 00:00:00

  • Custom-built electrostatics and supplementary bonding in the design of reinforced Collagen-g-P(methyl methacrylate-co-ethyl acrylate)/ nylon 66 core-shell fibers.

    abstract::In this study, Acid Soluble Collagen-g-P(methyl methacrylate-co-ethyl acrylate) (CME) was synthesized to take advantage of the flexibility of the resulted branched polymer chains and the high density of their chain entanglement. The coaxial electrospinning technique was applied to study the effect of electrically and ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.07.002

    authors: Bazrafshan Z,Stylios GK

    更新日期:2018-11-01 00:00:00

  • Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.

    abstract::Nowadays, there is a significant research focus on the development of bio-implant materials that have not only a low Young's modulus but also other unique characteristics such as a changeable Young's modulus and the ability to prevent calcium phosphate formation. Taking advantage of deformation-induced phases is an ef...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.06.020

    authors: Zhao X,Niinomi M,Nakai M

    更新日期:2011-11-01 00:00:00