High throughput miniature drug-screening platform using bioprinting technology.

Abstract:

:In the pharmaceutical industry, new drugs are tested to find appropriate compounds for therapeutic purposes for contemporary diseases. Unfortunately, novel compounds emerge at expensive prices and current target evaluation processes have limited throughput, thus leading to an increase of cost and time for drug development. This work shows the development of the novel inkjet-based deposition method for assembling a miniature drug-screening platform, which can realistically and inexpensively evaluate biochemical reactions in a picoliter-scale volume at a high speed rate. As proof of concept, applying a modified Hewlett Packard model 5360 compact disc printer, green fluorescent protein expressing Escherichia coli cells along with alginate gel solution have been arrayed on a coverslip chip under a repeatable volume of 180% ± 26% picoliters per droplet; subsequently, different antibiotic droplets were patterned on the spots of cells to evaluate the inhibition of bacteria for antibiotic screening. The proposed platform was compared to the current screening process, validating its effectiveness. The viability and basic function of the printed cells were evaluated, resulting in cell viability above 98% and insignificant or no DNA damage to human kidney cells transfected. Based on the reduction of investment and compound volume used by this platform, this technique has the potential to improve the actual drug discovery process at its target evaluation stage.

journal_name

Biofabrication

journal_title

Biofabrication

authors

Rodríguez-Dévora JI,Zhang B,Reyna D,Shi ZD,Xu T

doi

10.1088/1758-5082/4/3/035001

subject

Has Abstract

pub_date

2012-09-01 00:00:00

pages

035001

issue

3

eissn

1758-5082

issn

1758-5090

journal_volume

4

pub_type

杂志文章
  • Horseradish peroxidase/catalase-mediated cell-laden alginate-based hydrogel tube production in two-phase coaxial flow of aqueous solutions for filament-like tissues fabrication.

    abstract::We report a method for preparing cell-laden hydrogel tubes. This method uses a coaxial double-orifice spinneret, simpler than triple-orifice spinnerets which have been used for preparing similar constructs. The intended application was to create a template for preparing filament-like structures composed of two heterog...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/5/1/015012

    authors: Sakai S,Liu Y,Mah EJ,Taya M

    更新日期:2013-03-01 00:00:00

  • In situ modification of cell-culture scaffolds by photocatalytic decomposition of organosilane monolayers.

    abstract::We demonstrate a novel application of TiO2 photocatalysis for modifying the cell affinity of a scaffold surface in a cell-culture environment. An as-deposited octadecyltrichlorosilane self-assembled monolayer (OTS SAM) on TiO2 was found to be hydrophobic and stably adsorbed serum albumins that blocked subsequent adsor...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/3/035021

    authors: Yamamoto H,Demura T,Morita M,Kono S,Sekine K,Shinada T,Nakamura S,Tanii T

    更新日期:2014-09-01 00:00:00

  • Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting.

    abstract::The high attrition rate of neuro-pharmaceuticals as they proceed to market necessitates the development of clinically-relevant in vitro neural microphysiological systems that can be utilized during the preclinical screening phase to assess the safety and efficacy of potential compounds. Historically, proposed models h...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab41b4

    authors: Bowser DA,Moore MJ

    更新日期:2019-10-21 00:00:00

  • Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding.

    abstract::A major challenge in muscle tissue engineering is mimicking the ordered nanostructure of native collagen fibrils in muscles. Electrospun nanofiber constructs have been proposed as promising candidate alternatives to natural extracellular matrix. Here, we introduce a novel method to fabricate a two-dimension (2D) sheet...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024107

    authors: Park SH,Koh UH,Kim M,Yang DY,Suh KY,Shin JH

    更新日期:2014-06-01 00:00:00

  • Cell patterning through inkjet printing of one cell per droplet.

    abstract::The inkjet ejection technology used in printers has been adopted and research has been conducted on manufacturing artificial tissue by patterning cells through micronozzle ejection of small droplets containing multiple cells. However, stable injection of cells has proven difficult, owing to the frequent occurrence of ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/4/4/045005

    authors: Yamaguchi S,Ueno A,Akiyama Y,Morishima K

    更新日期:2012-12-01 00:00:00

  • Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control.

    abstract::Nature has evolved to grow and regenerate tissues and organs using self-assembling processes capable of organizing a wide variety of molecular building-blocks at multiple size scales. As the field of biofabrication progresses, it is essential to develop innovative ways that can enhance our capacity to build more compl...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab84cb

    authors: Hedegaard CL,Mata A

    更新日期:2020-06-01 00:00:00

  • Enhancing cell packing in buckyballs by acoustofluidic activation.

    abstract::How to pack materials into well-defined volumes efficiently has been a longstanding question of interest to physicists, material scientists, and mathematicians as these materials have broad applications ranging from shipping goods in commerce to seeds in agriculture and to spheroids in tissue engineering. How many mar...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab76d9

    authors: Ren T,Steiger W,Chen P,Ovsianikov A,Demirci U

    更新日期:2020-03-31 00:00:00

  • Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.

    abstract::Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturin...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045006

    authors: Flood P,Alvarez L,Reynaud EG

    更新日期:2016-10-11 00:00:00

  • Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs.

    abstract::A critical consideration in tissue engineering is to recapitulate the microstructural organization of native tissues that is essential to their function. Scaffold-based techniques have focused on achieving this via the contact guidance principle wherein topographical cues offered by scaffold fibers direct migration an...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab15cf

    authors: Chansoria P,Narayanan LK,Schuchard K,Shirwaiker R

    更新日期:2019-04-26 00:00:00

  • Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    abstract::Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumu...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5082/4/4/042001

    authors: Huang G,Wang L,Wang S,Han Y,Wu J,Zhang Q,Xu F,Lu TJ

    更新日期:2012-12-01 00:00:00

  • A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells.

    abstract::In recent years, novel biofabrication technologies have enabled the rapid manufacture of hydrogel-cell suspensions into tissue-imitating constructs. The development of novel materials for biofabrication still remains a challenge due to a gap between contradicting requirements such as three-dimensional printability and...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/2/025011

    authors: Köpf M,Campos DF,Blaeser A,Sen KS,Fischer H

    更新日期:2016-05-20 00:00:00

  • Neural priming of adipose-derived stem cells by cell-imprinted substrates.

    abstract::Cell-imprinting technology is a novel method for directing stem cell fate using substrates molded from target cells. Here, we fabricated and studied cell-imprinted substrates for neural priming in human adipose-derived stem cells in the absence of chemical cues. We molded polydimethylsiloxane (PDMS) silicone substrate...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abc66f

    authors: Ghazali ZS,Eskandari M,Bonakdar S,Renaud P,Mashinchian O,Shalileh S,Bonini F,Uckay I,Preynat-Seauve O,Braschler T

    更新日期:2020-10-30 00:00:00

  • In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures.

    abstract::The aim of this study was to comparatively evaluate the angiogenic capacity of cocultures using either human bone marrow- or human adipose tissue-derived mesenchymal stem cells (MSCs) (BM- or AT-MSCs) with human umbilical vein endothelial cells (HUVECs) both in vitro and in vivo at early time points (i.e. days 3 and 7...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/1/015005

    authors: Ma J,Yang F,Both SK,Prins HJ,Helder MN,Pan J,Cui FZ,Jansen JA,van den Beucken JJ

    更新日期:2014-03-01 00:00:00

  • Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    abstract::Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/3/035011

    authors: Koppes AN,Kamath M,Pfluger CA,Burkey DD,Dokmeci M,Wang L,Carrier RL

    更新日期:2016-08-22 00:00:00

  • Importance of endogenous extracellular matrix in biomechanical properties of human skin model.

    abstract::The physical and mechanical properties of cells modulate their behavior such proliferation rate, migration and extracellular matrix remodeling. In order to study cell behavior in a tissue-like environment in vitro, it is of utmost importance to develop biologically and physically relevant 3D cell models. Here, we char...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa6ed5

    authors: Pillet F,Gibot L,Madi M,Rols MP,Dague E

    更新日期:2017-05-11 00:00:00

  • Autonomous spheroid formation by culture plate compartmentation.

    abstract::Scaffold-free 3D cell cultures (e.g. pellet cultures) are widely used in medical science, including cartilage regeneration. Their drawbacks are high time/reagent consumption and lack of early readout parameters. While optimisation was achieved by automation or simplified spheroid generation, most culture systems remai...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abe186

    authors: Fürsatz M,Gerges P,Wolbank S,Nürnberger S

    更新日期:2021-01-29 00:00:00

  • A functionally gradient variational porosity architecture for hollowed scaffolds fabrication.

    abstract::This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieve...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/3/3/034106

    authors: Khoda AK,Ozbolat IT,Koc B

    更新日期:2011-09-01 00:00:00

  • Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells.

    abstract::Tissue engineering needs innovative solutions to better fit the requirements of a minimally invasive approach, providing at the same time instructive cues to cells. The use of shape memory polyurethane has been investigated by producing 4D scaffolds via additive manufacturing technology. Scaffolds with two different p...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa8114

    authors: Hendrikson WJ,Rouwkema J,Clementi F,van Blitterswijk CA,Farè S,Moroni L

    更新日期:2017-08-02 00:00:00

  • Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting.

    abstract::Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aaf44a

    authors: You F,Chen X,Cooper DML,Chang T,Eames BF

    更新日期:2018-12-27 00:00:00

  • Optimized silicon reinforcement of carbon coatings by pulsed laser technique for superior functional biomedical surfaces fabrication.

    abstract::We report on the fabrication of silicon-reinforced carbon (C:Si) structures by combinatorial pulsed laser deposition to search for the best design for a new generation of multi-functional coated implants. The synthesized films were characterized from the morphological, structural, compositional, mechanical and microbi...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa7076

    authors: Mihailescu IN,Bociaga D,Popescu-Pelin G,Stan GE,Duta L,Socol G,Chifiriuc MC,Bleotu C,Lazar V,Husanu MA,Zgura I,Miculescu F,Negut I,Hapenciuc C

    更新日期:2017-06-01 00:00:00

  • Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.

    abstract::Three-dimensional (3D) printed poly(ε-caprolactone) (PCL) based scaffolds have being proposed for different tissue engineering applications. This study addresses the design and fabrication of 3D PCL constructs with different struts alignments at 90°, 45° and 90° with offset. The morphology and the mechanical behavior ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa698e

    authors: Ribeiro JFM,Oliveira SM,Alves JL,Pedro AJ,Reis RL,Fernandes EM,Mano JF

    更新日期:2017-05-11 00:00:00

  • Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement.

    abstract::Degeneration of the intervertebral disc (IVD) represents a significant musculoskeletal disease burden. Tissue engineering has proposed several strategies comprising the use of biodegradable materials to prepare scaffolds that can present mechanical properties similar to those of native IVD tissues. However, this might...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/1/015008

    authors: van Uden S,Silva-Correia J,Correlo VM,Oliveira JM,Reis RL

    更新日期:2015-01-21 00:00:00

  • Development of TRACER: tissue roll for analysis of cellular environment and response.

    abstract::The tumour microenvironment is heterogeneous and consists of multiple cell types, variable extracellular matrix (ECM) composition, and contains cell-defined gradients of small molecules, oxygen, nutrients and waste. Emerging in vitro cell culture systems that attempt to replicate these features often fail to incorpora...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/8/4/045008

    authors: Rodenhizer D,Cojocari D,Wouters BG,McGuigan AP

    更新日期:2016-10-18 00:00:00

  • 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    abstract::Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, ...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5090/9/1/012001

    authors: Li YC,Zhang YS,Akpek A,Shin SR,Khademhosseini A

    更新日期:2016-12-02 00:00:00

  • Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed.

    abstract::Critical understanding of the complex metastatic cascade of prostate cancer is necessary for the development of a therapeutic interventions for treating metastatic prostate cancer. Increasing evidence supports the synergistic role of biochemical and biophysical cues in cancer progression at metastases. The biochemical...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/abd9d6

    authors: Jasuja H,Kar S,Katti DR,Katti K

    更新日期:2021-01-08 00:00:00

  • Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration.

    abstract::Nowadays, 3D bioprinting technologies are rapidly emerging in the field of tissue engineering and regenerative medicine as effective tools enabling the fabrication of advanced tissue constructs that can recapitulate in vitro organ/tissue functions. Selecting the best strategy for bioink deposition is often challenging...

    journal_title:Biofabrication

    pub_type: 杂志文章,评审

    doi:10.1088/1758-5090/aae605

    authors: Costantini M,Colosi C,Święszkowski W,Barbetta A

    更新日期:2018-11-09 00:00:00

  • 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.

    abstract::In this study, we report the step-gradient nanocomposite (NC) hydrogel generated easily by spatial connection of different nanocomposite hydrogel pastes varying in the concentrations of nanomaterials with the aid of a 3D printing technique. The prepared 3D printed gradient NC hydrogel has self-adhesive properties and ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/ab3582

    authors: Motealleh A,Çelebi-Saltik B,Ermis N,Nowak S,Khademhosseini A,Kehr NS

    更新日期:2019-08-22 00:00:00

  • Fabrication of omentum-based matrix for engineering vascularized cardiac tissues.

    abstract::Fabricating three-dimensional, biocompatible microenvironments to support functional tissue assembly remains a key challenge in cardiac tissue engineering. We hypothesized that since the omentum can be removed from patients by minimally invasive procedures, the obtained underlying matrices can be manipulated to serve ...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5082/6/2/024101

    authors: Shevach M,Soffer-Tsur N,Fleischer S,Shapira A,Dvir T

    更新日期:2014-06-01 00:00:00

  • Design of 3D printed insert for hanging culture of Caco-2 cells.

    abstract::A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/7/1/015003

    authors: Shen C,Meng Q,Zhang G

    更新日期:2014-12-17 00:00:00

  • Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.

    abstract::A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably...

    journal_title:Biofabrication

    pub_type: 杂志文章

    doi:10.1088/1758-5090/aa663b

    authors: Lin H,Li Q,Lei Y

    更新日期:2017-04-24 00:00:00