Increased internal and external bacterial load during Drosophila aging without life-span trade-off.

Abstract:

:The role of microbial load during aging of the adult fruit fly Drosophila melanogaster is incompletely understood. Here we show dramatic increases in aerobic and anaerobic bacterial load during aging, both inside the body and on the surface. Scanning electron microscopy and cell staining analyses of the surface of aged flies detected structures resembling abundant small bacteria and bacterial biofilms. Bacteria cultured from laboratory flies included aerobic species Acetobacter aceti, Acetobacter tropicalis, and Acetobacter pasteurianus and anaerobic species Lactobacillus plantarum and Lactobacillus sp. MR-2; Lactobacillus homohiochii, Lactobacillus fructivorans, and Lactobacillus brevis were identified by DNA sequencing. Reducing bacterial load and antimicrobial peptide gene expression by axenic culture or antibiotics had no effect on life span. We conclude that Drosophila can tolerate a significant bacterial load and mount a large innate immune response without a detectable trade-off with life span; furthermore, microbes do not seem to limit life span under optimized laboratory conditions.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Ren C,Webster P,Finkel SE,Tower J

doi

10.1016/j.cmet.2007.06.006

subject

Has Abstract

pub_date

2007-08-01 00:00:00

pages

144-52

issue

2

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(07)00162-3

journal_volume

6

pub_type

杂志文章
  • DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging.

    abstract::Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activa...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.04.008

    authors: Park SJ,Gavrilova O,Brown AL,Soto JE,Bremner S,Kim J,Xu X,Yang S,Um JH,Koch LG,Britton SL,Lieber RL,Philp A,Baar K,Kohama SG,Abel ED,Kim MK,Chung JH

    更新日期:2017-05-02 00:00:00

  • Defined Paraventricular Hypothalamic Populations Exhibit Differential Responses to Food Contingent on Caloric State.

    abstract::Understanding the neural framework behind appetite control is fundamental to developing effective therapies to combat the obesity epidemic. The paraventricular hypothalamus (PVH) is critical for appetite regulation, yet, the real-time, physiological response properties of PVH neurons to nutrients are unknown. Using a ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2018.10.016

    authors: Li C,Navarrete J,Liang-Guallpa J,Lu C,Funderburk SC,Chang RB,Liberles SD,Olson DP,Krashes MJ

    更新日期:2019-03-05 00:00:00

  • Macrofinancing efficient remodeling of damaged muscle tissue.

    abstract::In this issue of Cell Metabolism, Mounier et al. (2013) show that AMPKα1 is a crucial contributor to the regeneration of damaged muscle tissues, acting in macrophages at the nexus between proinflammatory debris removal and resolution of muscle tissue inflammation. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2013.07.011

    authors: Krishnan V,Yaden BC

    更新日期:2013-08-06 00:00:00

  • Energy intake and exercise as determinants of brain health and vulnerability to injury and disease.

    abstract::Evolution favored individuals with superior cognitive and physical abilities under conditions of limited food sources, and brain function can therefore be optimized by intermittent dietary energy restriction (ER) and exercise. Such energetic challenges engage adaptive cellular stress-response signaling pathways in neu...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2012.08.012

    authors: Mattson MP

    更新日期:2012-12-05 00:00:00

  • ERRγ-A New Player in β Cell Maturation.

    abstract::Glucose and hormone responsiveness of pancreatic β cells is acquired during postnatal maturation and is critical for appropriate insulin secretion. In a recent issue of Cell Metabolism, Yoshihara et al. (2016) report that estrogen-related receptor γ (ERRγ) promotes functional maturation of both mouse neonatal β cells ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2016.04.026

    authors: Shirakawa J,Kulkarni RN

    更新日期:2016-05-10 00:00:00

  • Movin' on up: adipocytes become regulators of nutrient homeostasis.

    abstract::By locally infecting epididymal adipocytes of obese diabetic mice with the uncoupling protein-1 transgene, Yamada et al. (2006[this issue of Cell Metabolism]) unexpectedly induce leptin sensitivity with hypophagia and improvement in abnormal glucose and lipid abnormalities. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2006.02.005

    authors: Unger RH,Elmquist JK

    更新日期:2006-03-01 00:00:00

  • The liver--a potential new player in islet regeneration?

    abstract::Pancreatic islet beta cell mass expands in response to certain physiological conditions such as pregnancy and obesity, but the signaling pathways involved are not well understood. Possible insights come from a newly described regulatory circuit through which obesity-enhanced kinase signaling in the liver triggers expa...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.12.009

    authors: Moss LG,Newgard CB

    更新日期:2009-01-07 00:00:00

  • Crosstalk between components of circadian and metabolic cycles in mammals.

    abstract::In mammals, most metabolic processes are influenced by biological clocks and feeding rhythms. The mechanisms that couple metabolism to circadian oscillators are just emerging. NAD-dependent enzymes (e.g., Sirtuins and poly[ADP-ribose] polymerases), redox- and/or temperature-dependent transcription factors (e.g., CLOCK...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2011.01.006

    authors: Asher G,Schibler U

    更新日期:2011-02-02 00:00:00

  • Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor.

    abstract::Systemic bile acid (BA) homeostasis is a critical determinant of dietary fat digestion, enterohepatic function, and postprandial thermogenesis. However, major checkpoints for the dynamics and the molecular regulation of BA homeostasis remain unknown. Here we show that hypothalamic-pituitary-adrenal (HPA) axis impairme...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.04.010

    authors: Rose AJ,Berriel Díaz M,Reimann A,Klement J,Walcher T,Krones-Herzig A,Strobel O,Werner J,Peters A,Kleyman A,Tuckermann JP,Vegiopoulos A,Herzig S

    更新日期:2011-07-06 00:00:00

  • LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion.

    abstract::Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.01.009

    authors: Loh NY,Neville MJ,Marinou K,Hardcastle SA,Fielding BA,Duncan EL,McCarthy MI,Tobias JH,Gregson CL,Karpe F,Christodoulides C

    更新日期:2015-02-03 00:00:00

  • SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD+ and Function in Mice.

    abstract::Nicotinamide phosphoribosyltransferase (NAMPT), the key NAD(+) biosynthetic enzyme, has two different forms, intra- and extracellular (iNAMPT and eNAMPT), in mammals. However, the significance of eNAMPT secretion remains unclear. Here we demonstrate that deacetylation of iNAMPT by the mammalian NAD(+)-dependent deacet...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.04.002

    authors: Yoon MJ,Yoshida M,Johnson S,Takikawa A,Usui I,Tobe K,Nakagawa T,Yoshino J,Imai S

    更新日期:2015-05-05 00:00:00

  • A CRTCal link between energy and life span.

    abstract::Cutting down calories prolongs life, but how this works remains largely unknown. A recent study in Nature (Mair et al., 2011) shows that life span extension triggered by the energy-sensing protein kinase AMPK is mediated by an evolutionarily conserved transcriptional circuit involving CRTC-1 and CREB. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2011.03.012

    authors: Brunet A

    更新日期:2011-04-06 00:00:00

  • The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes.

    abstract::The fibroblast growth factor receptor 4 (FGFR4)-R388 single-nucleotide polymorphism has been associated with cancer risk and prognosis. Here we show that the FGFR4-R388 allele yields a receptor variant that preferentially promotes STAT3/5 signaling. This STAT activation transcriptionally induces Grb14 in pancreatic en...

    journal_title:Cell metabolism

    pub_type: 杂志文章,收录出版

    doi:10.1016/j.cmet.2013.05.002

    authors: Ezzat S,Zheng L,Florez JC,Stefan N,Mayr T,Hliang MM,Jablonski K,Harden M,Stančáková A,Laakso M,Haring HU,Ullrich A,Asa SL

    更新日期:2013-06-04 00:00:00

  • Causal Link between n-3 Polyunsaturated Fatty Acid Deficiency and Motivation Deficits.

    abstract::Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.02.012

    authors: Ducrocq F,Walle R,Contini A,Oummadi A,Caraballo B,van der Veldt S,Boyer ML,Aby F,Tolentino-Cortez T,Helbling JC,Martine L,Grégoire S,Cabaret S,Vancassel S,Layé S,Kang JX,Fioramonti X,Berdeaux O,Barreda-Gómez G,Masso

    更新日期:2020-04-07 00:00:00

  • Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan.

    abstract::Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized, primarily due to lack of robust analytical techniques. Using comparative metabolom...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.11.024

    authors: Mahanti P,Bose N,Bethke A,Judkins JC,Wollam J,Dumas KJ,Zimmerman AM,Campbell SL,Hu PJ,Antebi A,Schroeder FC

    更新日期:2014-01-07 00:00:00

  • Break on Through: Golgi-Derived Vesicles Aid in Mitochondrial Fission.

    abstract::Mitochondrial fission is sustained through contact with several organelles, including the endoplasmic reticulum, lysosomes, and the actin cytoskeleton. Nagashima et al. (2020) now demonstrate that PI(4)P-containing Golgi-derived vesicles also modulate mitochondrial fission, driven by Arf1 and PI(4)KIIIβ activity, iden...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.05.010

    authors: Rasmussen ML,Robertson GL,Gama V

    更新日期:2020-06-02 00:00:00

  • Obesity and FTO: Changing Focus at a Complex Locus.

    abstract::The fat mass and obesity-associated (FTO) gene was placed center stage when common intronic variants within the gene were robustly associated with human obesity. Murine models of perturbed Fto expression have shown effects on body weight and composition. However, a clear understanding of the link between FTO intronic ...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2014.09.010

    authors: Tung YCL,Yeo GSH,O'Rahilly S,Coll AP

    更新日期:2014-11-04 00:00:00

  • GDF15-From Biomarker to Allostatic Hormone.

    abstract::With the identification of its receptor in a highly specific region of the brain, interesting issues come to light regarding the normal physiological functions of GDF15, a secreted protein long identified as a biomarker of diverse disease states. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2017.10.017

    authors: O'Rahilly S

    更新日期:2017-12-05 00:00:00

  • The Pentose Phosphate Pathway Regulates the Circadian Clock.

    abstract::The circadian clock is a ubiquitous timekeeping system that organizes the behavior and physiology of organisms over the day and night. Current models rely on transcriptional networks that coordinate circadian gene expression of thousands of transcripts. However, recent studies have uncovered phylogenetically conserved...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.07.024

    authors: Rey G,Valekunja UK,Feeney KA,Wulund L,Milev NB,Stangherlin A,Ansel-Bollepalli L,Velagapudi V,O'Neill JS,Reddy AB

    更新日期:2016-09-13 00:00:00

  • Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    abstract::Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram c...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.03.009

    authors: Thai M,Graham NA,Braas D,Nehil M,Komisopoulou E,Kurdistani SK,McCormick F,Graeber TG,Christofk HR

    更新日期:2014-04-01 00:00:00

  • A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition.

    abstract::Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.06.001

    authors: Wan M,Leavens KF,Hunter RW,Koren S,von Wilamowitz-Moellendorff A,Lu M,Satapati S,Chu Q,Sakamoto K,Burgess SC,Birnbaum MJ

    更新日期:2013-07-02 00:00:00

  • TOR signaling and S6 kinase 1: Yeast catches up.

    abstract::Conservation of the rapamycin-sensitive TOR signaling network among eukaryotes has been instrumental to the rapid progress made in this field in recent years. A recent report in Molecular Cell (Urban et al., 2007) now extends this conservation to include Sch9, an AGC protein kinase family member from S. cerevisiae, wh...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章,评审

    doi:10.1016/j.cmet.2007.06.009

    authors: Powers T

    更新日期:2007-07-01 00:00:00

  • CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting.

    abstract::Signaling by the corticotropin-releasing factor receptor type 1 (CRFR1) plays an important role in mediating the autonomic response to stressful challenges. Multiple hypothalamic nuclei regulate sympathetic outflow. Although CRFR1 is highly expressed in the arcuate nucleus (Arc) of the hypothalamus, the identity of th...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.04.017

    authors: Kuperman Y,Weiss M,Dine J,Staikin K,Golani O,Ramot A,Nahum T,Kühne C,Shemesh Y,Wurst W,Harmelin A,Deussing JM,Eder M,Chen A

    更新日期:2016-06-14 00:00:00

  • Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk.

    abstract::The symbiotic gut microbiota modulate health and disease of the host through a series of transgenomic metabolic and immune regulatory axes. We explore connections between microbiome composition and function related to individual metabolic phenotypes and consider these interactions as possible targets for developing ne...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2012.10.007

    authors: Holmes E,Li JV,Marchesi JR,Nicholson JK

    更新日期:2012-11-07 00:00:00

  • Of mice and men: not ExAKTly the same?

    abstract::The serine-threonine protein kinase Akt2, also known as PKBβ, has been shown to regulate glucose and lipid metabolism in animal models. In a recent study published in Science, Hussain et al. (2011) report that in human subjects an activating mutation of Akt2 leads to hypoglycemia and, unexpectedly, asymmetric overgrow...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2011.11.009

    authors: Wan M,Birnbaum MJ

    更新日期:2011-12-07 00:00:00

  • Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice.

    abstract::XBP1 is a key regulator of the unfolded protein response (UPR), which is involved in a wide range of physiological and pathological processes. XBP1 ablation in liver causes profound hypolipidemia in mice, highlighting its critical role in lipid metabolism. XBP1 deficiency triggers feedback activation of its upstream e...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.09.004

    authors: So JS,Hur KY,Tarrio M,Ruda V,Frank-Kamenetsky M,Fitzgerald K,Koteliansky V,Lichtman AH,Iwawaki T,Glimcher LH,Lee AH

    更新日期:2012-10-03 00:00:00

  • Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking.

    abstract::AS160 has emerged as a key player in insulin-mediated glucose transport through controlling GLUT4 trafficking, which is thought to be regulated by insulin-stimulated phosphorylation of sites including the 14-3-3 binding phospho-Thr649 (equivalent to Thr642 in human AS160). To define physiological roles of AS160-Thr649...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.12.005

    authors: Chen S,Wasserman DH,MacKintosh C,Sakamoto K

    更新日期:2011-01-05 00:00:00

  • Cannabinoids provoke alcoholic steatosis through a conspiracy of neighbors.

    abstract::Cannabinoid signaling by CB1 receptors drives fibrogenesis and fat accumulation in liver. A report in this issue of Cell Metabolism (Jeong et al., 2008) now links hepatic stellate cells, a resident liver fibrogenic cell type, to the generation of steatosis through production of the endocannabinoid 2-arachidonoylglycer...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2008.02.002

    authors: Friedman SL,Nieto N

    更新日期:2008-03-01 00:00:00

  • Another Shp on the horizon for bile acids.

    abstract::Bile acid metabolism is tightly controlled due to the toxic effects of bile acid overload. In this issue, research from the Feng lab reports Shp2 as a novel integrator of hepatic bile acid and FGF15/FGF19 signaling, adding another layer of complexity to the control of bile acid biosynthesis. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.07.019

    authors: Perino A,Schoonjans K

    更新日期:2014-08-05 00:00:00

  • On the Complexity of PAHSA Research.

    abstract::Reporting in Cell Metabolism, Pflimlin et al. recently found no beneficial effect of PAHSAs on glucose control in mice on several high-fat diets. Kuda cautions that due to methodological differences, the data must be carefully reinterpreted, emphasizing that olive oil contains high amounts of FAHFAs, potentially maski...

    journal_title:Cell metabolism

    pub_type: 评论,信件

    doi:10.1016/j.cmet.2018.09.006

    authors: Kuda O

    更新日期:2018-10-02 00:00:00