Microglial Immunometabolism in Alzheimer's Disease.

Abstract:

:Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. In response to Aβ and tau aggregates, microglia, the primary innate immune cells of the central nervous system (CNS), facilitate Aβ and tau clearance and contribute to neuroinflammation that damages neurons. Microglia also perform a wide range of other functions, e.g., synaptic pruning, within the CNS that require a large amount of energy. Glucose appears to be the primary energy source, but microglia can utilize several other substrates for energy production including other sugars and ketone bodies. Recent studies have demonstrated that changes in the metabolic profiles of immune cells, including macrophages, are important in controlling their activation and effector functions. Additional studies have focused on the role of metabolism in neuron and astrocyte function while until recently microglia metabolism has been considerably less well understood. Considering many neurological disorders, such as neurodegeneration associated with AD, are associated with chronic inflammation and alterations in brain energy metabolism, it is hypothesized that microglial metabolism plays a significant role in the inflammatory responses of microglia during neurodegeneration. Here, we review the role of microglial immunometabolism in AD.

journal_name

Front Cell Neurosci

authors

Shippy DC,Ulland TK

doi

10.3389/fncel.2020.563446

subject

Has Abstract

pub_date

2020-09-18 00:00:00

pages

563446

issn

1662-5102

journal_volume

14

pub_type

杂志文章,评审
  • The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia.

    abstract::Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two progressive, fatal neurodegenerative syndromes with considerable clinical, genetic and pathological overlap. Clinical symptoms of FTD can be seen in ALS patients and vice versa. Recent genetic discoveries conclusively link the two diseases, ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00414

    authors: Radford RA,Morsch M,Rayner SL,Cole NJ,Pountney DL,Chung RS

    更新日期:2015-10-27 00:00:00

  • S100B Impairs Oligodendrogenesis and Myelin Repair Following Demyelination Through RAGE Engagement.

    abstract::Increased expression of S100B and its specific receptor for advanced glycation end products (RAGE) has been described in patients with multiple sclerosis (MS), being associated with an active demyelinating process. We previously showed that a direct neutralization of S100B reduces lysophosphatidylcholine (LPC)-induced...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00279

    authors: Santos G,Barateiro A,Brites D,Fernandes A

    更新日期:2020-09-04 00:00:00

  • Oligodendrogenesis after cerebral ischemia.

    abstract::Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle of adult rodent brain generate oligodendrocyte progenitor cells (OPCs) that disperse throughout the corpus callosum and striatum where some of OPCs differentiate into mature oligodendrocytes. Studies in animal models of stroke demonstrate that...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00201

    authors: Zhang R,Chopp M,Zhang ZG

    更新日期:2013-10-29 00:00:00

  • Innate Immune Cells: Monocytes, Monocyte-Derived Macrophages and Microglia as Therapeutic Targets for Alzheimer's Disease and Multiple Sclerosis.

    abstract::The immune system provides protection in the CNS via resident microglial cells and those that traffic into it in the course of pathological challenges. These populations of cells are key players in modulating immune functions that are involved in disease outcomes. In this review, we briefly summarize and highlight the...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00355

    authors: Fani Maleki A,Rivest S

    更新日期:2019-07-31 00:00:00

  • Pharmacological Targeting of CSF1R Inhibits Microglial Proliferation and Aggravates the Progression of Cerebral Ischemic Pathology.

    abstract::Ischemic stroke can induce rapid activation of the microglia. It has been reported that the microglia's survival is dependent on colony-stimulating factor 1 receptor (CSF1R) signaling and that pharmacological inhibition of CSF1R leads to morphological changes in the microglia in the healthy brain. However, the impact ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00267

    authors: Hou B,Jiang C,Wang D,Wang G,Wang Z,Zhu M,Kang Y,Su J,Wei P,Ren H,Ju F

    更新日期:2020-10-16 00:00:00

  • Effects of Voluntary Wheel-Running Types on Hippocampal Neurogenesis and Spatial Cognition in Middle-Aged Mice.

    abstract::While increasing evidence demonstrated that voluntary wheel running promotes cognitive function, little is known on how different types of voluntary wheel running affect cognitive function in elderly populations. We investigated the effects of various voluntary wheel-running types on adult hippocampal neurogenesis and...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00177

    authors: Huang YQ,Wu C,He XF,Wu D,He X,Liang FY,Dai GY,Pei Z,Xu GQ,Lan Y

    更新日期:2018-06-26 00:00:00

  • 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice.

    abstract::Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectru...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00070

    authors: Gandhi RM,Kogan CS,Messier C

    更新日期:2014-03-06 00:00:00

  • Plasticity of GABA transporters: an unconventional route to shape inhibitory synaptic transmission.

    abstract::The brain relies on GABAergic neurons to control the ongoing activity of neuronal networks. GABAergic neurons control the firing pattern of excitatory cells, the temporal structure of membrane potential oscillations and the time window for integration of synaptic inputs. These actions require a fine control of the tim...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00128

    authors: Scimemi A

    更新日期:2014-05-13 00:00:00

  • Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis-Endocytosis Coupling.

    abstract::The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2018.00066

    authors: Lou X

    更新日期:2018-03-14 00:00:00

  • Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis.

    abstract::Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00434

    authors: Natale G,Lenzi P,Lazzeri G,Falleni A,Biagioni F,Ryskalin L,Fornai F

    更新日期:2015-11-06 00:00:00

  • Glia in the cytokine-mediated onset of depression: fine tuning the immune response.

    abstract::Major depressive disorder (MDD) is a mood disorder of multifactorial origin affecting millions of people worldwide. The alarming estimated rates of prevalence and relapse make it a global public health concern. Moreover, the current setback of available antidepressants in the clinical setting is discouraging. Therefor...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00268

    authors: Jo WK,Zhang Y,Emrich HM,Dietrich DE

    更新日期:2015-07-10 00:00:00

  • IL-33/ST2L Signaling Provides Neuroprotection Through Inhibiting Autophagy, Endoplasmic Reticulum Stress, and Apoptosis in a Mouse Model of Traumatic Brain Injury.

    abstract::Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) cytokine family and an extracellular ligand for the orphan IL-1 receptor ST2. Accumulated evidence shows that the IL-33/ST2 axis plays a crucial role in the pathogenesis of central nervous system (CNS) diseases and injury, including traumatic brain injury ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00095

    authors: Gao Y,Zhang MY,Wang T,Fan YY,Yu LS,Ye GH,Wang ZF,Gao C,Wang HC,Luo CL,Tao LY

    更新日期:2018-04-25 00:00:00

  • Enhanced Synaptic Activity and Epileptiform Events in the Embryonic KCC2 Deficient Hippocampus.

    abstract::The neuronal potassium-chloride co-transporter 2 [indicated thereafter as KCC2 (for protein) and Kcc2 (for gene)] is thought to play an important role in the post natal excitatory to inhibitory switch of GABA actions in the rodent hippocampus. Here, by studying hippocampi of wild-type (Kcc2(+/+)) and Kcc2 deficient (K...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2011.00023

    authors: Khalilov I,Chazal G,Chudotvorova I,Pellegrino C,Corby S,Ferrand N,Gubkina O,Nardou R,Tyzio R,Yamamoto S,Jentsch TJ,Hübner CA,Gaiarsa JL,Ben-Ari Y,Medina I

    更新日期:2011-11-01 00:00:00

  • ER stress and unfolded protein response in amyotrophic lateral sclerosis-a controversial role of protein disulphide isomerase.

    abstract::Accumulation of proteins in aberrant conformation occurs in many neurodegenerative diseases. Furthermore, dysfunctions in protein handling in endoplasmic reticulum (ER) and the following ER stress have been implicated in a vast number of diseases, such as amyotrophic lateral sclerosis (ALS). During excessive ER stress...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00402

    authors: Jaronen M,Goldsteins G,Koistinaho J

    更新日期:2014-12-02 00:00:00

  • Long Term Gene Expression in Human Induced Pluripotent Stem Cells and Cerebral Organoids to Model a Neurodegenerative Disease.

    abstract::Human brain organoids (mini-brains) consist of self-organized three-dimensional (3D) neural tissue which can be derived from reprogrammed adult cells and maintained for months in culture. These 3D structures manifest substantial potential for the modeling of neurodegenerative diseases and pave the way for personalized...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00014

    authors: Nassor F,Jarray R,Biard DSF,Maïza A,Papy-Garcia D,Pavoni S,Deslys JP,Yates F

    更新日期:2020-02-11 00:00:00

  • Dye Tracking Following Posterior Semicircular Canal or Round Window Membrane Injections Suggests a Role for the Cochlea Aqueduct in Modulating Distribution.

    abstract::The inner ear houses the sensory epithelium responsible for vestibular and auditory function. The sensory epithelia are driven by pressure and vibration of the fluid filled structures in which they are embedded so that understanding the homeostatic mechanisms regulating fluid dynamics within these structures is critic...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00471

    authors: Talaei S,Schnee ME,Aaron KA,Ricci AJ

    更新日期:2019-10-30 00:00:00

  • Protection after stroke: cellular effectors of neurovascular unit integrity.

    abstract::Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood fl...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00231

    authors: Posada-Duque RA,Barreto GE,Cardona-Gomez GP

    更新日期:2014-08-14 00:00:00

  • Automated Morphological Analysis of Microglia After Stroke.

    abstract::Microglia are the resident immune cells of the brain and react quickly to changes in their environment with transcriptional regulation and morphological changes. Brain tissue injury such as ischemic stroke induces a local inflammatory response encompassing microglial activation. The change in activation status of a mi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00106

    authors: Heindl S,Gesierich B,Benakis C,Llovera G,Duering M,Liesz A

    更新日期:2018-04-19 00:00:00

  • Role of satellite glial cells in gastrointestinal pain.

    abstract::Gastrointestinal (GI) pain is a common clinical problem, for which effective therapy is quite limited. Sensations from the GI tract, including pain, are mediated largely by neurons in the dorsal root ganglia (DRG), and to a smaller extent by vagal afferents emerging from neurons in the nodose/jugular ganglia. Neurons ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00412

    authors: Hanani M

    更新日期:2015-10-13 00:00:00

  • Perspectives on Cannabis-Based Therapy of Multiple Sclerosis: A Mini-Review.

    abstract::The consistency, efficacy, and safety of cannabis-based medicines have been demonstrated in humans, leading to the approval of the first cannabis-based therapy to alleviate spasticity and pain associated with multiple sclerosis (MS). Indeed, the evidence supporting the therapeutic potential of cannabinoids for the man...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2020.00034

    authors: Mecha M,Carrillo-Salinas FJ,Feliú A,Mestre L,Guaza C

    更新日期:2020-02-19 00:00:00

  • Excitability Tuning of Axons by Afterdepolarization.

    abstract::The axon provides a sole output of the neuron which propagates action potentials reliably to the axon terminal and transmits neuronal information to the postsynaptic neuron across the synapse. A classical view of neuronal signaling is based on these two processes, namely binary (all or none) signaling along the axon a...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00407

    authors: Kamiya H

    更新日期:2019-09-06 00:00:00

  • Patterns of Cerebellar Gray Matter Atrophy Across Alzheimer's Disease Progression.

    abstract::The role of the cerebellum in cognitive function has been broadly investigated in the last decades from an anatomical, clinical, and functional point of view and new evidence points toward a significant contribution of the posterior lobes of the cerebellum in cognition in Alzheimer's disease (AD). In the present work ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00430

    authors: Toniolo S,Serra L,Olivito G,Marra C,Bozzali M,Cercignani M

    更新日期:2018-11-20 00:00:00

  • Superparamagnetic Iron Oxide Nanoparticle-Mediated Forces Enhance the Migration of Schwann Cells Across the Astrocyte-Schwann Cell Boundary In vitro.

    abstract::Schwann cells (SCs) are one of the most promising cellular candidates for the treatment of spinal cord injury. However, SCs show poor migratory ability within the astrocyte-rich central nervous system (CNS) environment and exhibit only limited integration with host astrocytes. Our strategy for improving the therapeuti...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00083

    authors: Huang L,Xia B,Liu Z,Cao Q,Huang J,Luo Z

    更新日期:2017-03-28 00:00:00

  • Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia.

    abstract::Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00223

    authors: Lu H,Song X,Wang F,Wang G,Wu Y,Wang Q,Wang Y,Yang GY,Zhang Z

    更新日期:2016-09-30 00:00:00

  • NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence.

    abstract::The proliferative pool of neural progenitor cells is maintained by exquisitely controlled mechanisms for cell cycle regulation. The Na-K-Cl cotransporter (NKCC1) is important for regulating cell volume and the proliferation of different cell types in vitro. NKCC1 is expressed in ventral telencephalon of embryonic brai...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00200

    authors: Magalhães AC,Rivera C

    更新日期:2016-08-17 00:00:00

  • Mechanical stress activates neurites and somata of myenteric neurons.

    abstract::The particular location of myenteric neurons, sandwiched between the 2 muscle layers of the gut, implies that their somata and neurites undergo mechanical stress during gastrointestinal motility. Existence of mechanosensitive enteric neurons (MEN) is undoubted but many of their basic features remain to be studied. In ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00342

    authors: Kugler EM,Michel K,Zeller F,Demir IE,Ceyhan GO,Schemann M,Mazzuoli-Weber G

    更新日期:2015-09-15 00:00:00

  • MicroRNA-210 Protects PC-12 Cells Against Hypoxia-Induced Injury by Targeting BNIP3.

    abstract::MicroRNA (miR)-210 is the most consistently and predominantly up-regulated miR in response to hypoxia in multiple cancer cells. The roles of miR-210 in rat adrenal gland pheochromocytoma (PC-12) cells remain unknown. We aimed to explore the possible effect of miR-210 in neonatal brain injury. We explored the potential...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00285

    authors: Luan Y,Zhang X,Zhang Y,Dong Y

    更新日期:2017-09-22 00:00:00

  • Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts.

    abstract::In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying h...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00382

    authors: He Y,Cai C,Tang D,Sun S,Li H

    更新日期:2014-11-13 00:00:00

  • Xenon Exerts Neuroprotective Effects on Kainic Acid-Induced Acute Generalized Seizures in Rats via Increased Autophagy.

    abstract::Xenon has been shown to have neuroprotective effects and is clinically used as a favorable safe inhalation anesthetic. We previously confirmed the neuroprotective effects of xenon treatment in epileptic animals. However, the mechanism underlying these protective effects remains unclear. We aimed to assess the effects ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.582872

    authors: Zhu W,Zhu J,Zhao S,Li J,Hou D,Zhang Y,Sun H

    更新日期:2020-10-06 00:00:00

  • Combination Low-Dose Tissue-Type Plasminogen Activator Plus Annexin A2 for Improving Thrombolytic Stroke Therapy.

    abstract::Risk of hemorrhagic transformation, incomplete reperfusion, neurotoxicity, and a short treatment time window comprises major challenges for tissue plasminogen activator (tPA) thrombolytic stroke therapy. Improving tPA therapy has become one of the highest priorities in the stroke field. This mini review article focuse...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00397

    authors: Jiang Y,Fan X,Yu Z,Liao Z,Wang XS,van Leyen K,Sun X,Lo EH,Wang X

    更新日期:2015-10-14 00:00:00