Targeting Microglial Population Dynamics in Alzheimer's Disease: Are We Ready for a Potential Impact on Immune Function?

Abstract:

:Alzheimer's disease (AD) is the most common form of dementia, affecting two-thirds of people with dementia in the world. To date, no disease-modifying treatments are available to stop or delay the progression of AD. This chronic neurodegenerative disease is dominated by a strong innate immune response, whereby microglia plays a central role as the main resident macrophage of the brain. Recent genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) located in microglial genes and associated with a delayed onset of AD, highlighting the important role of these cells on the onset and/or progression of the disease. These findings have increased the interest in targeting microglia-associated neuroinflammation as a potentially disease-modifying therapeutic approach for AD. In this review we provide an overview on the contribution of microglia to the pathophysiology of AD, focusing on the main regulatory pathways controlling microglial population dynamics during the neuroinflammatory response, such as the colony-stimulating factor 1 receptor (CSF1R), its ligands (the colony-stimulating factor 1 and interleukin 34) and the transcription factor PU.1. We also discuss the current therapeutic strategies targeting proliferation to modulate microglia-associated neuroinflammation and their potential impact on peripheral immune cell populations in the short and long-term. Understanding the effects of immunomodulatory approaches on microglia and other immune cell types might be critical for developing specific, effective, and safe therapies for neurodegenerative diseases.

journal_name

Front Cell Neurosci

authors

Martin-Estebane M,Gomez-Nicola D

doi

10.3389/fncel.2020.00149

subject

Has Abstract

pub_date

2020-06-05 00:00:00

pages

149

issn

1662-5102

journal_volume

14

pub_type

杂志文章
  • Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases.

    abstract::Microglia are activated after neuronal injury and in neurodegenerative diseases, and trigger neuroinflammation in the central nervous system (CNS). Microglia-derived neuroinflammation has both beneficial and detrimental effects on neurons. Because the timing and magnitude of microglial activation is thought to be a cr...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2018.00206

    authors: Konishi H,Kiyama H

    更新日期:2018-08-06 00:00:00

  • The WWOX Gene Influences Cellular Pathways in the Neuronal Differentiation of Human Neural Progenitor Cells.

    abstract::The brain is the most functionally organized structure of all organs. It manages behavior, perception and higher cognitive functions. The WWOX gene is non-classical tumor suppressor gene, which has been shown to have an impact on proliferation, apoptosis and migration processes. Moreover, genetic aberrations in WWOX i...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00391

    authors: Kośla K,Płuciennik E,Styczeń-Binkowska E,Nowakowska M,Orzechowska M,Bednarek AK

    更新日期:2019-08-30 00:00:00

  • GABA Neuronal Deletion of Shank3 Exons 14-16 in Mice Suppresses Striatal Excitatory Synaptic Input and Induces Social and Locomotor Abnormalities.

    abstract::Shank3 is an excitatory postsynaptic scaffolding protein implicated in multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). Although previous neurobiological studies on Shank3 and Shank3-mutant mice have revealed diverse roles of Shank3 in the regulation of synaptic, ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00341

    authors: Yoo T,Cho H,Lee J,Park H,Yoo YE,Yang E,Kim JY,Kim H,Kim E

    更新日期:2018-10-09 00:00:00

  • A seeded propagation of Cu, Zn-superoxide dismutase aggregates in amyotrophic lateral sclerosis.

    abstract::Abnormal accumulation of protein inclusions in motor neurons has been known as a major pathological change in amyotrophic lateral sclerosis (ALS). Increasing numbers of proteins including mutant Cu, Zn-superoxide dismutase (SOD1) have been identified as constituents of pathological inclusions in a form of insoluble fi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00083

    authors: Ogawa M,Furukawa Y

    更新日期:2014-03-18 00:00:00

  • Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update.

    abstract::The blood-brain barrier (BBB) is a diffusion barrier that has an important role in maintaining a precisely regulated microenvironment protecting the neural tissue from infectious agents and toxins in the circulating system. Compromised BBB integrity plays a major role in the pathogenesis of retroviral associated neuro...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00212

    authors: Atluri VS,Hidalgo M,Samikkannu T,Kurapati KR,Jayant RD,Sagar V,Nair MP

    更新日期:2015-06-10 00:00:00

  • Histone deacetylases and their role in motor neuron degeneration.

    abstract::Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterized by the progressive loss of motor neurons. The cause of this selective neuronal death is unknown, but transcriptional dysregulation is recently emerging as an important factor. The physical substrate for the regulation of the transc...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00243

    authors: Lazo-Gómez R,Ramírez-Jarquín UN,Tovar-Y-Romo LB,Tapia R

    更新日期:2013-12-05 00:00:00

  • D-serine as a gliotransmitter and its roles in brain development and disease.

    abstract::The development of new techniques to study glial cells has revealed that they are active participants in the development of functional neuronal circuits. Calcium imaging studies demonstrate that glial cells actively sense and respond to neuronal activity. Glial cells can produce and release neurotransmitter-like molec...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00039

    authors: Van Horn MR,Sild M,Ruthazer ES

    更新日期:2013-04-23 00:00:00

  • P2X2 Receptor Expression and Function Is Upregulated in the Rat Supraoptic Nucleus Stimulated Through Refeeding After Fasting.

    abstract::Magnocellular neurons in the supraoptic nucleus (SON), which synthesize and release arginine vasopressin (AVP) and oxytocin (OT), express several subtypes of ATP-stimulated purinergic P2X receptors (P2XR) that modulate neuronal activity as well as neurotransmitter and hormone release. However, the physiological impact...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00284

    authors: Ivetic M,Bhattacharyya A,Zemkova H

    更新日期:2019-06-26 00:00:00

  • Studying Axon-Astrocyte Functional Interactions by 3D Two-Photon Ca2+ Imaging: A Practical Guide to Experiments and "Big Data" Analysis.

    abstract::Recent advances in fast volumetric imaging have enabled rapid generation of large amounts of multi-dimensional functional data. While many computer frameworks exist for data storage and analysis of the multi-gigabyte Ca2+ imaging experiments in neurons, they are less useful for analyzing Ca2+ dynamics in astrocytes, w...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00098

    authors: Savtchouk I,Carriero G,Volterra A

    更新日期:2018-04-13 00:00:00

  • Antagonization of the Nogo-Receptor 1 Enhances Dopaminergic Fiber Outgrowth of Transplants in a Rat Model of Parkinson's Disease.

    abstract::Intrastriatal transplantation of fetal human ventral mesencephalic dopaminergic neurons is an experimental therapy for patients suffering from Parkinson's disease. The success of this approach depends on several host brain parameters including neurotrophic factors and growth inhibitors that guide survival and integrat...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00151

    authors: Seiler S,Di Santo S,Andereggen L,Widmer HR

    更新日期:2017-05-26 00:00:00

  • Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells.

    abstract::Genetically encoded Ca(2+) indicators (GECIs) are promising tools for cell type-specific and chronic recording of neuronal activity. In the mammalian central nervous system, however, GECIs have been tested almost exclusively in cortical and hippocampal pyramidal cells, and the usefulness of recently developed GECIs ha...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2011.00018

    authors: Yamada Y,Michikawa T,Hashimoto M,Horikawa K,Nagai T,Miyawaki A,Häusser M,Mikoshiba K

    更新日期:2011-09-29 00:00:00

  • Identification and function of long non-coding RNA.

    abstract::Long non-coding (lnc) RNAs are defined as non-protein coding RNAs distinct from housekeeping RNAs such as tRNAs, rRNAs, and snRNAs, and independent from small RNAs with specific molecular processing machinery such as micro- or piwi-RNAs. Recent studies of lncRNAs across different species have revealed a diverse popula...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00168

    authors: Ernst C,Morton CC

    更新日期:2013-10-02 00:00:00

  • Prominent Changes in Cerebro-Cerebellar Functional Connectivity During Continuous Cognitive Processing.

    abstract::While task-dependent responses of specific brain areas during cognitive tasks are well established, much less is known about the changes occurring in resting state networks (RSNs) in relation to continuous cognitive processing. In particular, the functional involvement of cerebro-cerebellar loops connecting the poster...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00331

    authors: Castellazzi G,Bruno SD,Toosy AT,Casiraghi L,Palesi F,Savini G,D'Angelo E,Wheeler-Kingshott CAMG

    更新日期:2018-10-01 00:00:00

  • The Onset and Progression of Hippocampal Synaptic Plasticity Deficits in the Q175FDN Mouse Model of Huntington Disease.

    abstract::Huntington disease (HD) is an inherited neurodegenerative disease characterized by a clinical triad of motor, psychiatric and cognitive symptoms. HD is caused by a CAG repeat expansion in the gene encoding the huntingtin protein. Homozygosity for the HD-causing mutation is extremely rare; thus, the majority of HD pati...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00326

    authors: Quirion JG,Parsons MP

    更新日期:2019-07-17 00:00:00

  • Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation.

    abstract::Action potential-dependent release of synaptic vesicles and short-term synaptic plasticity are dynamically regulated by the endogenous Ca(2+) buffers that shape [Ca(2+)] profiles within a presynaptic bouton. Calmodulin is one of the most abundant presynaptic proteins and it binds Ca(2+) faster than any other character...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00239

    authors: Timofeeva Y,Volynski KE

    更新日期:2015-07-01 00:00:00

  • Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons.

    abstract::Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00471

    authors: Dagostin AA,Lovell PV,Hilscher MM,Mello CV,Leão RM

    更新日期:2015-12-10 00:00:00

  • Synapse-Specific Regulation Revealed at Single Synapses Is Concealed When Recording Multiple Synapses.

    abstract::Synaptic transmission and its activity-dependent modulation, known as synaptic plasticity, are fundamental processes in nervous system function. Neurons may receive thousands of synaptic contacts, but synaptic regulation may occur only at individual or discrete subsets of synapses, which may have important consequence...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00367

    authors: Lines J,Covelo A,Gómez R,Liu L,Araque A

    更新日期:2017-11-23 00:00:00

  • GABA(A) Receptor β3 Subunit Expression Regulates Tonic Current in Developing Striatopallidal Medium Spiny Neurons.

    abstract::The striatum is a key structure for movement control, but the mechanisms that dictate the output of distinct subpopulations of medium spiny projection neurons (MSNs), striatonigral projecting and dopamine D1 receptor- (D1+) or striatopallidal projecting and dopamine D2 receptor- (D2+) expressing neurons, remains poorl...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2011.00015

    authors: Janssen MJ,Yasuda RP,Vicini S

    更新日期:2011-07-28 00:00:00

  • Exosomes as Novel Regulators of Adult Neurogenic Niches.

    abstract::Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while ne...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00501

    authors: Bátiz LF,Castro MA,Burgos PV,Velásquez ZD,Muñoz RI,Lafourcade CA,Troncoso-Escudero P,Wyneken U

    更新日期:2016-01-19 00:00:00

  • Role of satellite glial cells in gastrointestinal pain.

    abstract::Gastrointestinal (GI) pain is a common clinical problem, for which effective therapy is quite limited. Sensations from the GI tract, including pain, are mediated largely by neurons in the dorsal root ganglia (DRG), and to a smaller extent by vagal afferents emerging from neurons in the nodose/jugular ganglia. Neurons ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00412

    authors: Hanani M

    更新日期:2015-10-13 00:00:00

  • 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice.

    abstract::Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectru...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00070

    authors: Gandhi RM,Kogan CS,Messier C

    更新日期:2014-03-06 00:00:00

  • Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    abstract::Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippoc...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00102

    authors: Orellana JA,Moraga-Amaro R,Díaz-Galarce R,Rojas S,Maturana CJ,Stehberg J,Sáez JC

    更新日期:2015-04-02 00:00:00

  • Blood-CNS Barrier Impairment in ALS patients versus an animal model.

    abstract::Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with a complicated and poorly understood pathogenesis. Recently, alterations in the blood-Central Nervous System barrier (B-CNS-B) have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS mic...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00021

    authors: Garbuzova-Davis S,Sanberg PR

    更新日期:2014-02-03 00:00:00

  • Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex.

    abstract::The anterior cingulate cortex (ACC) is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging t...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00107

    authors: Zhao R,Zhou H,Huang L,Xie Z,Wang J,Gan WB,Yang G

    更新日期:2018-04-20 00:00:00

  • Transduction of Adeno-Associated Virus Vectors Targeting Hair Cells and Supporting Cells in the Neonatal Mouse Cochlea.

    abstract::Adeno-associated virus (AAV) is the preferred vector for gene therapy of hereditary deafness, and different viral serotypes, promoters and transduction pathways can influence the targeting of AAV to different types of cells and the expression levels of numerous exogenous genes. To determine the transduction and expres...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00008

    authors: Gu X,Chai R,Guo L,Dong B,Li W,Shu Y,Huang X,Li H

    更新日期:2019-01-24 00:00:00

  • Rifampicin Attenuated Global Cerebral Ischemia Injury via Activating the Nuclear Factor Erythroid 2-Related Factor Pathway.

    abstract::Background: Recent studies have found that rifampicin has neuroprotective properties in neurodegenerative diseases. However, the exact mechanisms of action remain unclear. The nuclear factor erythroid 2-related factor 2 (Nrf2) has been considered a potential target for neuroprotection. In this study, we examined wheth...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00273

    authors: Chen B,Cao H,Chen L,Yang X,Tian X,Li R,Cheng O

    更新日期:2016-11-29 00:00:00

  • miR-9: a versatile regulator of neurogenesis.

    abstract::Soon after its discovery, microRNA-9 (miR-9) attracted the attention of neurobiologists, since it is one of the most highly expressed microRNAs in the developing and adult vertebrate brain. Functional analyses in different vertebrate species have revealed a prominent role of this microRNA in balancing proliferation in...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00220

    authors: Coolen M,Katz S,Bally-Cuif L

    更新日期:2013-11-20 00:00:00

  • Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises.

    abstract::Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervo...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.581907

    authors: McAlary L,Chew YL,Lum JS,Geraghty NJ,Yerbury JJ,Cashman NR

    更新日期:2020-11-04 00:00:00

  • Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia.

    abstract::Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00223

    authors: Lu H,Song X,Wang F,Wang G,Wu Y,Wang Q,Wang Y,Yang GY,Zhang Z

    更新日期:2016-09-30 00:00:00

  • Role of CXCR1 and Interleukin-8 in Methamphetamine-Induced Neuronal Apoptosis.

    abstract::Methamphetamine (METH), an extremely and widely abused illicit drug, can cause serious nervous system damage and social problems. Previous research has shown that METH use causes dopaminergic neuron apoptosis and astrocyte-related neuroinflammation. However, the relationship of astrocytes and neurons in METH-induced n...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00230

    authors: Du SH,Zhang W,Yue X,Luo XQ,Tan XH,Liu C,Qiao DF,Wang H

    更新日期:2018-08-03 00:00:00