Transcriptional Reorganization of Drosophila Motor Neurons and Their Muscular Junctions toward a Neuroendocrine Phenotype by the bHLH Protein Dimmed.

Abstract:

:Neuroendocrine cells store and secrete bulk amounts of neuropeptides, and display morphological and molecular characteristics distinct from neurons signaling with classical neurotransmitters. In Drosophila the transcription factor Dimmed (Dimm), is a prime organizer of neuroendocrine capacity in a majority of the peptidergic neurons. These neurons display large cell bodies and extensive axon terminations that commonly do not form regular synapses. We ask which molecular compartments of a neuron are affected by Dimm to generate these morphological features. Thus, we ectopically expressed Dimm in glutamatergic, Dimm-negative, motor neurons and analyzed their characteristics in the central nervous system and the neuromuscular junction. Ectopic Dimm results in motor neurons with enlarged cell bodies, diminished dendrites, larger axon terminations and boutons, as well as reduced expression of synaptic proteins both pre and post-synaptically. Furthermore, the neurons display diminished vesicular glutamate transporter, and signaling components known to sustain interactions between the developing axon termination and muscle, such as wingless and frizzled are down regulated. Ectopic co-expression of Dimm and the insulin receptor augments most of the above effects on the motor neurons. In summary, ectopic Dimm expression alters the glutamatergic motor neuron phenotype toward a neuroendocrine one, both pre- and post-synaptically. Thus, Dimm is a key organizer of both secretory capacity and morphological features characteristic of neuroendocrine cells, and this transcription factor affects also post-synaptic proteins.

journal_name

Front Mol Neurosci

authors

Luo J,Liu Y,Nässel DR

doi

10.3389/fnmol.2017.00260

subject

Has Abstract

pub_date

2017-08-14 00:00:00

pages

260

issn

1662-5099

journal_volume

10

pub_type

杂志文章
  • Cosyntropin Attenuates Neuroinflammation in a Mouse Model of Traumatic Brain Injury.

    abstract::Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00109

    authors: Siebold L,Krueger AC,Abdala JA,Figueroa JD,Bartnik-Olson B,Holshouser B,Wilson CG,Ashwal S

    更新日期:2020-06-26 00:00:00

  • Bcl11 Transcription Factors Regulate Cortical Development and Function.

    abstract::Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor fami...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00051

    authors: Simon R,Wiegreffe C,Britsch S

    更新日期:2020-04-08 00:00:00

  • Emerging roles of glycogen synthase kinase 3 in the treatment of brain tumors.

    abstract::The constitutively active protein glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, acts paradoxically as a tumor suppressor in some cancers while potentiates growth in others. Deciphering what governs its actions is vital for understanding many pathological conditions, including brain cancer. What are see...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00047

    authors: Mills CN,Nowsheen S,Bonner JA,Yang ES

    更新日期:2011-11-25 00:00:00

  • Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders.

    abstract::Neurodevelopmental disorders (NDDs) are characterized by a wide range of symptoms including delayed speech, intellectual disability, motor dysfunction, social deficits, breathing problems, structural abnormalities, and epilepsy. Unfortunately, current treatment strategies are limited and innovative new approaches are ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00387

    authors: Fisher NM,Seto M,Lindsley CW,Niswender CM

    更新日期:2018-10-23 00:00:00

  • Loss of DEK Expression Induces Alzheimer's Disease Phenotypes in Differentiated SH-SY5Y Cells.

    abstract::Alzheimer's disease (AD) is the most common cause of dementia and is characterized by the buildup of β-amyloid plaques and neurofibrillary Tau tangles. This leads to decreased synaptic efficacy, cell death, and, consequently, brain atrophy in patients. Behaviorally, this manifests as memory loss and confusion. Using a...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.594319

    authors: Greene AN,Parks LG,Solomon MB,Privette Vinnedge LM

    更新日期:2020-11-16 00:00:00

  • Re-innervation of the Denervated Dentate Gyrus by Sprouting Associational and Commissural Mossy Cell Axons in Organotypic Tissue Cultures of Entorhinal Cortex and Hippocampus.

    abstract::Collateral sprouting of surviving axons contributes to the synaptic reorganization after brain injury. To study this clinically relevant phenomenon, we used complex organotypic tissue cultures of mouse entorhinal cortex (EC) and hippocampus (H). Single EC-H cultures were generated to analyze associational sprouting, a...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00270

    authors: Del Turco D,Paul MH,Beeg Moreno VJ,Hildebrandt-Einfeldt L,Deller T

    更新日期:2019-11-12 00:00:00

  • Functions of GSK-3 Signaling in Development of the Nervous System.

    abstract::Glycogen synthase kinase-3 (GSK-3) is central to multiple intracellular pathways including those activated by Wnt/β-catenin, Sonic Hedgehog, Notch, growth factor/RTK, and G protein-coupled receptor signals. All of these signals importantly contribute to neural development. Early attention on GSK-3 signaling in neural ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00044

    authors: Kim WY,Snider WD

    更新日期:2011-11-17 00:00:00

  • Excessive Treadmill Training Enhances Brain-Specific MicroRNA-34a in the Mouse Hippocampus.

    abstract::Background: An imbalance between total training load and total recovery may cause overtraining (OT). The purpose of the present study was to verify the effects of OT on the expression of brain-derived neurotrophic factor (BDNF), its receptor tropomyosin receptor kinase B (TrkB) and p75 and the dynamic expression patte...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00007

    authors: Xu L,Zheng YL,Yin X,Xu SJ,Tian D,Zhang CY,Wang S,Ma JZ

    更新日期:2020-01-30 00:00:00

  • Fragile-X Syndrome Is Associated With NMDA Receptor Hypofunction and Reduced Dendritic Complexity in Mature Dentate Granule Cells.

    abstract::Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. It is caused by the overexpansion of cytosine-guanine-guanine (CGG) trinucleotide in Fmr1 gene, resulting in complete loss of the fragile X mental retardation protein (FMRP). Previous studies using Fmr1 knockout (Fmr1 KO) mice have ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00495

    authors: Yau SY,Bettio L,Chiu J,Chiu C,Christie BR

    更新日期:2019-01-17 00:00:00

  • Novel Strategies for the Generation of Neuronal Diversity: Lessons From the Fly Visual System.

    abstract::Among all organs of an adult animal, the central nervous system stands out because of its vast complexity and morphological diversity. During early development, the entire central nervous system develops from an apparently homogenous group of progenitors that differentiate into all neural cell types. Therefore, unders...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00140

    authors: Contreras EG,Sierralta J,Oliva C

    更新日期:2019-05-31 00:00:00

  • CB1 and LPA1 Receptors Relationship in the Mouse Central Nervous System.

    abstract::Neurolipids are a class of bioactive lipids that are produced locally through specific biosynthetic pathways in response to extracellular stimuli. Neurolipids are important endogenous regulators of neural cell proliferation, differentiation, oxidative stress, inflammation and apoptosis. Endocannabinoids (eCBs) and lys...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00223

    authors: González de San Román E,Manuel I,Ledent C,Chun J,Rodríguez de Fonseca F,Estivill-Torrús G,Santín LJ,Rodríguez Puertas R

    更新日期:2019-09-19 00:00:00

  • Stimulation of Sphingosine Kinase 1 (SPHK1) Is Beneficial in a Huntington's Disease Pre-clinical Model.

    abstract::Although several agents have been identified to provide therapeutic benefits in Huntington disease (HD), the number of conventionally used treatments remains limited and only symptomatic. Thus, it is plausible that the need to identify new therapeutic targets for the development of alternative and more effective treat...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00100

    authors: Di Pardo A,Pepe G,Castaldo S,Marracino F,Capocci L,Amico E,Madonna M,Giova S,Jeong SK,Park BM,Park BD,Maglione V

    更新日期:2019-04-24 00:00:00

  • Nicotine Prevents Oxidative Stress-Induced Hippocampal Neuronal Injury Through α7-nAChR/Erk1/2 Signaling Pathway.

    abstract::Oxidative stress-induced neuronal damage has been implicated to play a dominant role in neurodegenerative disorders, such as Alzheimer's disease (AD). Nicotine, a principal additive compound for tobacco users, is thought as a candidate to attenuate amyloid-β-mediated neurotoxicity and NMDA-induced excitotoxicity. Prev...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.557647

    authors: Dong Y,Bi W,Zheng K,Zhu E,Wang S,Xiong Y,Chang J,Jiang J,Liu B,Lu Z,Cheng Y

    更新日期:2020-11-12 00:00:00

  • Localization of Retinal Ca2+/Calmodulin-Dependent Kinase II-β (CaMKII-β) at Bipolar Cell Gap Junctions and Cross-Reactivity of a Monoclonal Anti-CaMKII-β Antibody With Connexin36.

    abstract::Neuronal gap junctions formed by connexin36 (Cx36) and chemical synapses share striking similarities in terms of plasticity. Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme known to induce memory formation at chemical synapses, has recently been described to potentiate electrical coupling in the retina...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00206

    authors: Tetenborg S,Yadav SC,Brüggen B,Zoidl GR,Hormuzdi SG,Monyer H,van Woerden GM,Janssen-Bienhold U,Dedek K

    更新日期:2019-08-28 00:00:00

  • Spatiotemporal and Long Lasting Modulation of 11 Key Nogo Signaling Genes in Response to Strong Neuroexcitation.

    abstract::Inhibition of nerve growth and plasticity in the CNS is to a large part mediated by Nogo-like signaling, now encompassing a plethora of ligands, receptors, co-receptors and modulators. Here we describe the distribution and levels of mRNA encoding 11 key genes involved in Nogo-like signaling (Nogo-A, Oligodendrocyte-My...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00094

    authors: Karlsson TE,Wellfelt K,Olson L

    更新日期:2017-04-11 00:00:00

  • Absence of Wdr13 Gene Predisposes Mice to Mild Social Isolation - Chronic Stress, Leading to Depression-Like Phenotype Associated With Differential Expression of Synaptic Proteins.

    abstract::We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its ro...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00133

    authors: Mitra S,Sameer Kumar GS,Jyothi Lakshmi B,Thakur S,Kumar S

    更新日期:2018-04-25 00:00:00

  • Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation.

    abstract::Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neu...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2013.00050

    authors: Müller-Dahlhaus F,Vlachos A

    更新日期:2013-12-17 00:00:00

  • Distribution and Restoration of Serotonin-Immunoreactive Paraneuronal Cells During Caudal Fin Regeneration in Zebrafish.

    abstract::Aquatic vertebrates possess diverse types of sensory cells in their skin to detect stimuli in the water. In the adult zebrafish, a common model organism, the presence of such cells in fins has only rarely been studied. Here, we identified scattered serotonin (5-HT)-positive cells in the epidermis of the caudal fin. Th...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00227

    authors: König D,Dagenais P,Senk A,Djonov V,Aegerter CM,Jaźwińska A

    更新日期:2019-09-19 00:00:00

  • RISC in PD: the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis.

    abstract::Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized primarily by the selective death of dopaminergic (DA) neurons in the substantia nigra pars compacta of the midbrain. Although several genetic forms of PD have been identified, the precise molecular mechanisms underlying DA neuron loss i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2013.00040

    authors: Heman-Ackah SM,Hallegger M,Rao MS,Wood MJ

    更新日期:2013-11-20 00:00:00

  • Quantitative Changes in the Mitochondrial Proteome of Cerebellar Synaptosomes From Preclinical Cystatin B-Deficient Mice.

    abstract::Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. How...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.570640

    authors: Gorski K,Spoljaric A,Nyman TA,Kaila K,Battersby BJ,Lehesjoki AE

    更新日期:2020-11-13 00:00:00

  • Cysteines as Redox Molecular Switches and Targets of Disease.

    abstract::Thiol groups can undergo numerous modifications, making cysteine a unique molecular switch. Cysteine plays structural and regulatory roles as part of proteins or glutathione, contributing to maintain redox homeostasis and regulate signaling within and amongst cells. Not surprisingly therefore, cysteines are associated...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00167

    authors: Fra A,Yoboue ED,Sitia R

    更新日期:2017-06-06 00:00:00

  • Maternal L-Carnitine Supplementation Improves Brain Health in Offspring from Cigarette Smoke Exposed Mothers.

    abstract::Maternal cigarette smoke exposure (SE) causes detrimental changes associated with the development of chronic neurological diseases in the offspring as a result of oxidative mitochondrial damage. Maternal L-Carnitine administration has been shown to reduce renal oxidative stress in SE offspring, but its effect in the b...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00033

    authors: Chan YL,Saad S,Al-Odat I,Oliver BG,Pollock C,Jones NM,Chen H

    更新日期:2017-02-13 00:00:00

  • Structure-Based Peptide Inhibitor Design of Amyloid-β Aggregation.

    abstract::Many human neurodegenerative diseases are associated with amyloid fibril formation. Inhibition of amyloid formation is of importance for therapeutics of the related diseases. However, the development of selective potent amyloid inhibitors remains challenging. Here based on the structures of amyloid β (Aβ) fibrils and ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00054

    authors: Lu J,Cao Q,Wang C,Zheng J,Luo F,Xie J,Li Y,Ma X,He L,Eisenberg D,Nowick J,Jiang L,Li D

    更新日期:2019-03-04 00:00:00

  • Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity.

    abstract::Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00091

    authors: Haass-Koffler CL,Bartlett SE

    更新日期:2012-09-06 00:00:00

  • Different Amyloid-β Self-Assemblies Have Distinct Effects on Intracellular Tau Aggregation.

    abstract::Alzheimer's disease (AD) pathology is characterized by the aggregation of beta-amyloid (Aβ) and tau in the form of amyloid plaques and neurofibrillary tangles in the brain. It has been found that a synergistic relationship between these two proteins may contribute to their roles in disease progression. However, how Aβ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00268

    authors: Shin WS,Di J,Murray KA,Sun C,Li B,Bitan G,Jiang L

    更新日期:2019-11-08 00:00:00

  • Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle.

    abstract::Dysfunctions in hearing and balance are largely connected with hair cell (HC) loss. Although regeneration of HCs in the adult cochlea does not occur, there is still limited capacity for HC regeneration in the mammalian utricle from a distinct population of supporting cells (SCs). In response to HC damage, these Lgr5+ ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00137

    authors: You D,Guo L,Li W,Sun S,Chen Y,Chai R,Li H

    更新日期:2018-04-30 00:00:00

  • Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes.

    abstract::MicroRNAs (miRNAs) are key post transcriptional regulators of their multiple target genes. However, the detailed profile of miRNA expression in Parkinson's disease, the second most common neurodegenerative disease worldwide and the first motor disorder has not been charted yet. Here, we report comprehensive miRNA prof...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2013.00010

    authors: Soreq L,Salomonis N,Bronstein M,Greenberg DS,Israel Z,Bergman H,Soreq H

    更新日期:2013-05-13 00:00:00

  • Regulation of AMPA Receptor Trafficking by Protein Ubiquitination.

    abstract::The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustme...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00347

    authors: Widagdo J,Guntupalli S,Jang SE,Anggono V

    更新日期:2017-10-26 00:00:00

  • Identification of lncRNAs Associated With Neuroblastoma in Cross-Sectional Databases: Potential Biomarkers.

    abstract::Long non-coding RNAs (lncRNAs) have emerged as an important regulatory control in biological systems. Though the field of lncRNA has been progressing rapidly, a complete understanding of the role of lncRNAs in neuroblastoma pathogenesis is still lacking. To identify the abrogated lncRNAs in primary neuroblastoma and i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00293

    authors: Prajapati B,Fatma M,Fatima M,Khan MT,Sinha S,Seth PK

    更新日期:2019-12-12 00:00:00

  • Trk Receptors and Neurotrophin Cross-Interactions: New Perspectives Toward Manipulating Therapeutic Side-Effects.

    abstract::Some therapeutic side-effects result from simultaneous activation of homolog receptors by the same ligand. Tropomyosin receptor kinases (TrkA, TrkB and TrkC) play a major role in the development and biology of neurons through neurotrophin signaling. The wide range of cross-interactions between Trk receptors and neurot...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00130

    authors: Haddad Y,Adam V,Heger Z

    更新日期:2017-05-03 00:00:00