Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation.

Abstract:

:Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K(+) and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

journal_name

Front Cell Neurosci

authors

Wang YF,Parpura V

doi

10.3389/fncel.2016.00129

subject

Has Abstract

pub_date

2016-05-13 00:00:00

pages

129

issn

1662-5102

journal_volume

10

pub_type

杂志文章,评审
  • MEA6 Deficiency Impairs Cerebellar Development and Motor Performance by Tethering Protein Trafficking.

    abstract::Meningioma expressed antigen 6 (MEA6), also called cutaneous T cell lymphoma-associated antigen 5 (cTAGE5), was initially found in tumor tissues. MEA6 is located in endoplasmic reticulum (ER) exit sites and regulates the transport of collagen, very low density lipoprotein, and insulin. It is also reported that MEA6 mi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00250

    authors: Wang XT,Cai XY,Xu FX,Zhou L,Zheng R,Ma KY,Xu ZH,Shen Y

    更新日期:2019-06-11 00:00:00

  • Dendritic Spikes in Sensory Perception.

    abstract::What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem fro...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2017.00029

    authors: Manita S,Miyakawa H,Kitamura K,Murayama M

    更新日期:2017-02-15 00:00:00

  • Synapse-specific inhibitory control of hippocampal feedback inhibitory circuit.

    abstract::Local circuit and long-range GABAergic projections provide powerful inhibitory control over the operation of hippocampal inhibitory circuits, yet little is known about the input- and target-specific organization of interacting inhibitory networks in relation to their specific functions. Using a combination of two-phot...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2010.00130

    authors: Chamberland S,Salesse C,Topolnik D,Topolnik L

    更新日期:2010-10-15 00:00:00

  • Sensory transduction at the frog semicircular canal: how hair cell membrane potential controls junctional transmission.

    abstract::At the frog semicircular canals, the afferent fibers display high spontaneous activity (mEPSPs), due to transmitter release from hair cells. mEPSP and spike frequencies are modulated by stimulation that activates the hair cell receptor conductance. The relation between receptor current and transmitter release cannot b...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00235

    authors: Martini M,Canella R,Rubbini G,Fesce R,Rossi ML

    更新日期:2015-06-23 00:00:00

  • Role of CXCR1 and Interleukin-8 in Methamphetamine-Induced Neuronal Apoptosis.

    abstract::Methamphetamine (METH), an extremely and widely abused illicit drug, can cause serious nervous system damage and social problems. Previous research has shown that METH use causes dopaminergic neuron apoptosis and astrocyte-related neuroinflammation. However, the relationship of astrocytes and neurons in METH-induced n...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00230

    authors: Du SH,Zhang W,Yue X,Luo XQ,Tan XH,Liu C,Qiao DF,Wang H

    更新日期:2018-08-03 00:00:00

  • Long-Term Stress Disrupts the Structural and Functional Integrity of GABAergic Neuronal Networks in the Medial Prefrontal Cortex of Rats.

    abstract::Clinical and experimental data suggest that fronto-cortical GABAergic deficits contribute to the pathophysiology of major depressive disorder (MDD). To further test this hypothesis, we used a well characterized rat model for depression and examined the effect of stress on GABAergic neuron numbers and GABA-mediated syn...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00148

    authors: Czéh B,Vardya I,Varga Z,Febbraro F,Csabai D,Martis LS,Højgaard K,Henningsen K,Bouzinova EV,Miseta A,Jensen K,Wiborg O

    更新日期:2018-06-20 00:00:00

  • Differential regulation of collapsin response mediator protein 2 (CRMP2) phosphorylation by GSK3ß and CDK5 following traumatic brain injury.

    abstract::Aberrant ion channel function has been heralded as a main underlying mechanism driving epilepsy and its symptoms. However, it has become increasingly clear that treatment strategies targeting voltage-gated sodium or calcium channels merely mask the symptoms of epilepsy without providing disease-modifying benefits. Ion...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00135

    authors: Wilson SM,Ki Yeon S,Yang XF,Park KD,Khanna R

    更新日期:2014-05-28 00:00:00

  • Notoginsenoside R1-Induced Neuronal Repair in Models of Alzheimer Disease Is Associated With an Alteration in Neuronal Hyperexcitability, Which Is Regulated by Nav.

    abstract::Alzheimer disease is characterized by a progressive cognitive deficit and may be associated with an aberrant hyperexcitability of the neuronal network. Notoginsenoside R1 (R1), a major activity ingredient from Panax notoginseng, has demonstrated favorable changes in neuronal plasticity and induced neuroprotective effe...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00280

    authors: Hu T,Li S,Liang WQ,Li SS,Lu MN,Chen B,Zhang L,Mao R,Ding WH,Gao WW,Chen SW,XiYang YB,Zhang J,Wang XY

    更新日期:2020-09-04 00:00:00

  • Matrix metalloproteinase 9 (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala.

    abstract::It has been shown that matrix metalloproteinase 9 (MMP-9) is required for synaptic plasticity, learning and memory. In particular, MMP-9 involvement in long-term potentiation (LTP, the model of synaptic plasticity) in the hippocampus and prefrontal cortex has previously been demonstrated. Recent data suggest the role ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00073

    authors: Gorkiewicz T,Balcerzyk M,Kaczmarek L,Knapska E

    更新日期:2015-03-11 00:00:00

  • IFN-γ Producing Th1 Cells Induce Different Transcriptional Profiles in Microglia and Astrocytes.

    abstract::Autoreactive T cells that infiltrate into the central nervous system (CNS) are believed to have a significant role in mediating the pathology of neuroinflammatory diseases like multiple sclerosis. Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of neuroinflammatory processes. O...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00352

    authors: Prajeeth CK,Dittrich-Breiholz O,Talbot SR,Robert PA,Huehn J,Stangel M

    更新日期:2018-10-10 00:00:00

  • Bioenergetic Failure in Rat Oligodendrocyte Progenitor Cells Treated with Cerebrospinal Fluid Derived from Multiple Sclerosis Patients.

    abstract::In relapsing-remitting multiple sclerosis (RRMS) subtype, the patient's brain itself is capable of repairing the damage, remyelinating the axon and recovering the neurological function. Cerebrospinal fluid (CSF) is in close proximity with brain parenchyma and contains a host of proteins and other molecules, which infl...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00209

    authors: Mathur D,Riffo-Campos AL,Castillo J,Haines JD,Vidaurre OG,Zhang F,Coret-Ferrer F,Casaccia P,Casanova B,Lopez-Rodas G

    更新日期:2017-07-18 00:00:00

  • Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APPSWE/PS1ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease.

    abstract::Neuroinflammation, characterized by chronic activation of the myeloid-derived microglia, is a hallmark of Alzheimer's disease (AD). Systemic inflammation, typically resulting from infection, has been linked to the progression of AD due to exacerbation of the chronic microglial reaction. However, the mechanism and the ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00397

    authors: Thygesen C,Ilkjær L,Kempf SJ,Hemdrup AL,von Linstow CU,Babcock AA,Darvesh S,Larsen MR,Finsen B

    更新日期:2018-11-06 00:00:00

  • Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation.

    abstract:OBJECTIVE:Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. METHODS:Lipopolysaccharide (LPS) or saline were administered intravenously to non-anesthetized chronically instrumented near-ter...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00294

    authors: Cao M,Cortes M,Moore CS,Leong SY,Durosier LD,Burns P,Fecteau G,Desrochers A,Auer RN,Barreiro LB,Antel JP,Frasch MG

    更新日期:2015-08-04 00:00:00

  • Oligodendrogenesis after cerebral ischemia.

    abstract::Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle of adult rodent brain generate oligodendrocyte progenitor cells (OPCs) that disperse throughout the corpus callosum and striatum where some of OPCs differentiate into mature oligodendrocytes. Studies in animal models of stroke demonstrate that...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00201

    authors: Zhang R,Chopp M,Zhang ZG

    更新日期:2013-10-29 00:00:00

  • Striatal Gαolf/cAMP Signal-Dependent Mechanism to Generate Levodopa-Induced Dyskinesia in Parkinson's Disease.

    abstract::The motor symptoms of Parkinson's disease (PD) result from striatal dopamine (DA) deficiency due to a progressive degeneration of nigral dopaminergic cells. Although DA replacement therapy is the mainstay to treat parkinsonian symptoms, a long-term daily administration of levodopa often develops levodopa-induced dyski...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00364

    authors: Goto S

    更新日期:2017-11-21 00:00:00

  • Otic Neurogenesis Is Regulated by TGFβ in a Senescence-Independent Manner.

    abstract::Cellular senescence has classically been associated with aging. Intriguingly, recent studies have also unraveled key roles for senescence in embryonic development, regeneration, and reprogramming. Developmental senescence has been reported during embryonic development in different organisms and structures, such as the...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00217

    authors: Magariños M,Barajas-Azpeleta R,Varela-Nieto I,R Aburto M

    更新日期:2020-08-17 00:00:00

  • The Functional Role of Spinal Interneurons Following Traumatic Spinal Cord Injury.

    abstract::Traumatic spinal cord injury (SCI) impedes signal transmission by disrupting both the local neurons and their surrounding synaptic connections. Although the majority of SCI patients retain spared neural tissue at the injury site, they predominantly suffer from complete autonomic and sensorimotor dysfunction. While the...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00127

    authors: Zavvarian MM,Hong J,Fehlings MG

    更新日期:2020-05-18 00:00:00

  • HCN Channel Modulation of Synaptic Integration in GABAergic Interneurons in Malformed Rat Neocortex.

    abstract::Cortical malformations are often associated with pharmaco-resistant epilepsy. Alterations in hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels have been shown to contribute to malformation associated hyperexcitability. We have recently demonstrated that expression of HCN channels...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00109

    authors: Albertson AJ,Bohannon AS,Hablitz JJ

    更新日期:2017-04-19 00:00:00

  • Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid.

    abstract::Prenatal exposure to the antiepileptic drug valproic acid (VPA) induces autism spectrum disorder (ASD) in humans and autistic-like behaviors in rodents, which makes it a good model to study the neural underpinnings of ASD. Rats prenatally exposed to VPA show profound deficits in the social domain. The altered social b...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00479

    authors: Schiavi S,Iezzi D,Manduca A,Leone S,Melancia F,Carbone C,Petrella M,Mannaioni G,Masi A,Trezza V

    更新日期:2019-10-25 00:00:00

  • Developmental Easing of Short-Term Depression in "Winner" Climbing Fibers.

    abstract::The postnatal development of cerebellar climbing fiber (CF) to Purkinje neuron (PN) synapses is characterized by a substantial pruning during the first 3 weeks after birth, switching from multiple- to single-CF innervation. Previous studies suggested that CF maturation is governed by bidirectional changes of synaptic ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00183

    authors: Pätz C,Brachtendorf S,Eilers J

    更新日期:2019-05-01 00:00:00

  • Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway.

    abstract::Autism is a neurodevelopmental disorder marked by social skills and communication deficits and interfering repetitive behavior. Intellectual disability often accompanies autism. In addition to behavioral deficits, autism is characterized by neuropathology and brain overgrowth. Increased intracranial volume often accom...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00094

    authors: Lahiri DK,Sokol DK,Erickson C,Ray B,Ho CY,Maloney B

    更新日期:2013-06-21 00:00:00

  • TRH Analog, Taltirelin Improves Motor Function of Hemi-PD Rats Without Inducing Dyskinesia via Sustained Dopamine Stimulating Effect.

    abstract::Thyrotropin-releasing hormone (TRH) and its analogs are able to stimulate the release of the endogenic dopamine (DA) in the central nervous system. However, this effect has not been tested in the Parkinson's disease (PD), which is characterized by the DA deficiency due to the dopaminergic neurons loss in the substanti...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00417

    authors: Zheng C,Chen G,Tan Y,Zeng W,Peng Q,Wang J,Cheng C,Yang X,Nie S,Xu Y,Zhang Z,Papa SM,Ye K,Cao X

    更新日期:2018-11-13 00:00:00

  • Heritable and inducible gene knockdown in astrocytes or neurons in vivo by a combined lentiviral and RNAi approach.

    abstract::Gene knockout by homologous recombination is a popular method to study gene functions in the mouse in vivo. However, its lack of temporal control has limited the interpretation of knockout studies because the complete elimination of a gene product often alters developmental processes, and can induce severe malformatio...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00062

    authors: Heitz F,Johansson T,Baumgärtel K,Gecaj R,Pelczar P,Mansuy IM

    更新日期:2014-03-19 00:00:00

  • A Survey of Retinal Remodeling.

    abstract::Up to 15 years ago, bibliographic searches based on keywords such as "photoreceptor degeneration, inner retina" or "photoreceptor degeneration, second order neurons" returned only a handful of papers, as the field was dominated by the general assumption that retinal degeneration had direct effects on the sole populati...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00494

    authors: Strettoi E

    更新日期:2015-12-23 00:00:00

  • Exosomes as Novel Regulators of Adult Neurogenic Niches.

    abstract::Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while ne...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00501

    authors: Bátiz LF,Castro MA,Burgos PV,Velásquez ZD,Muñoz RI,Lafourcade CA,Troncoso-Escudero P,Wyneken U

    更新日期:2016-01-19 00:00:00

  • CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment.

    abstract::In recent years several evidence demonstrated that some features of hippocampal biology, like neurogenesis, synaptic transmission, learning, and memory performances are deeply modulated by social, motor, and sensorial experiences. Fractalkine/CX(3)CL1 is a transmembrane chemokine abundantly expressed in the brain by n...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2011.00022

    authors: Maggi L,Scianni M,Branchi I,D'Andrea I,Lauro C,Limatola C

    更新日期:2011-10-19 00:00:00

  • Modulation of Murine Olivary Connexin 36 Gap Junctions by PKA and CaMKII.

    abstract::The inferior olive (IO) is a nucleus located in the brainstem and it is part of the olivo-cerebellar loop. This circuit plays a fundamental role in generation and acquisition of coherent motor patterns and it relies on synchronous activation of groups of Purkinje cells (PC) in the cerebellar cortex. IO neurons integra...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00397

    authors: Bazzigaluppi P,Isenia SC,Haasdijk ED,Elgersma Y,De Zeeuw CI,van der Giessen RS,de Jeu MTG

    更新日期:2017-12-14 00:00:00

  • Excitability Tuning of Axons by Afterdepolarization.

    abstract::The axon provides a sole output of the neuron which propagates action potentials reliably to the axon terminal and transmits neuronal information to the postsynaptic neuron across the synapse. A classical view of neuronal signaling is based on these two processes, namely binary (all or none) signaling along the axon a...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00407

    authors: Kamiya H

    更新日期:2019-09-06 00:00:00

  • Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    abstract::The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00178

    authors: Grier BD,Belluscio L,Cheetham CE

    更新日期:2016-07-15 00:00:00

  • Activity dependent CAM cleavage and neurotransmission.

    abstract::Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surf...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00305

    authors: Conant K,Allen M,Lim ST

    更新日期:2015-08-11 00:00:00