Direct connections assist neurons to detect correlation in small amplitude noises.

Abstract:

:We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitatory couplings. Depending on whether intrinsic firing rate of the neurons is identical or slightly different, symmetric or asymmetric connections can increase the sensitivity of the system to the input correlation by changing the mean slope of the correlation transfer function over a given range of input correlation. In either case, there is also an optimum value for synaptic strength which maximizes the sensitivity of the system to the changes in input correlation.

journal_name

Front Comput Neurosci

authors

Bolhasani E,Azizi Y,Valizadeh A

doi

10.3389/fncom.2013.00108

subject

Has Abstract

pub_date

2013-08-14 00:00:00

pages

108

issn

1662-5188

journal_volume

7

pub_type

杂志文章
  • A stimulus-dependent spike threshold is an optimal neural coder.

    abstract::A neural code based on sequences of spikes can consume a significant portion of the brain's energy budget. Thus, energy considerations would dictate that spiking activity be kept as low as possible. However, a high spike-rate improves the coding and representation of signals in spike trains, particularly in sensory sy...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00061

    authors: Jones DL,Johnson EC,Ratnam R

    更新日期:2015-06-02 00:00:00

  • Revealing the Computational Meaning of Neocortical Interarea Signals.

    abstract::To understand the function of the neocortex, which is a hierarchical distributed network, it is useful giving meaning to the signals transmitted between these areas from the computational viewpoint. The overall anatomical structure or organs related to this network, including the neocortex, thalamus, and basal ganglia...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00074

    authors: Yamakawa H

    更新日期:2020-08-18 00:00:00

  • Striatal Network Models of Huntington's Disease Dysfunction Phenotypes.

    abstract::We present a network model of striatum, which generates "winnerless" dynamics typical for a network of sparse, unidirectionally connected inhibitory units. We observe that these dynamics, while interesting and a good match to normal striatal electrophysiological recordings, are fragile. Specifically, we find that rand...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00070

    authors: Zheng P,Kozloski J

    更新日期:2017-07-27 00:00:00

  • Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation.

    abstract::The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior oli...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2014.00097

    authors: Luque NR,Garrido JA,Carrillo RR,D'Angelo E,Ros E

    更新日期:2014-08-15 00:00:00

  • A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate.

    abstract::Recent research in neuroscience indicates the importance of tripartite synapses and gliotransmission mediated by astrocytes in neuronal system modulation. Although the astrocyte and neuronal network functions are interrelated, they are fundamentally different in their signaling patterns and, possibly, the time scales ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00092

    authors: Lenk K,Satuvuori E,Lallouette J,Ladrón-de-Guevara A,Berry H,Hyttinen JAK

    更新日期:2020-01-22 00:00:00

  • Cancer Risk Analysis Based on Improved Probabilistic Neural Network.

    abstract::The problem of cancer risk analysis is of great importance to health-service providers and medical researchers. In this study, we propose a novel Artificial Neural Network (ANN) algorithm based on the probabilistic framework, which aims to investigate patient patterns associated with their disease development. Compare...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00058

    authors: Yang C,Yang J,Liu Y,Geng X

    更新日期:2020-07-21 00:00:00

  • Differing effects of attention in single-units and populations are well predicted by heterogeneous tuning and the normalization model of attention.

    abstract::Single-unit measurements have reported many different effects of attention on contrast-response (e.g., contrast-gain, response-gain, additive-offset dependent on visibility), while functional imaging measurements have more uniformly reported increases in response across all contrasts (additive-offset). The normalizati...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00012

    authors: Hara Y,Pestilli F,Gardner JL

    更新日期:2014-02-19 00:00:00

  • Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex.

    abstract::Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells thro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00045

    authors: Patel MJ

    更新日期:2018-06-12 00:00:00

  • Structure learning and the Occam's razor principle: a new view of human function acquisition.

    abstract::We often encounter pairs of variables in the world whose mutual relationship can be described by a function. After training, human responses closely correspond to these functional relationships. Here we study how humans predict unobserved segments of a function that they have been trained on and we compare how human p...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00121

    authors: Narain D,Smeets JB,Mamassian P,Brenner E,van Beers RJ

    更新日期:2014-09-30 00:00:00

  • A three-dimensional mathematical model for the signal propagation on a neuron's membrane.

    abstract::In order to be able to examine the extracellular potential's influence on network activity and to better understand dipole properties of the extracellular potential, we present and analyze a three-dimensional formulation of the cable equation which facilitates numeric simulations. When the neuron's intra- and extracel...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00094

    authors: Xylouris K,Wittum G

    更新日期:2015-07-17 00:00:00

  • Inhibition potentiates the synchronizing action of electrical synapses.

    abstract::In vivo and in vitro experimental studies have found that blocking electrical interactions connecting GABAergic interneurons reduces oscillatory activity in the gamma range in cortex. However, recent theoretical works have shown that the ability of electrical synapses to promote or impede synchrony, when alone, depend...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.10.008.2007

    authors: Pfeuty B,Golomb D,Mato G,Hansel D

    更新日期:2007-11-02 00:00:00

  • Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency.

    abstract::This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy co...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00010

    authors: Han F,Wang Z,Fan H

    更新日期:2017-02-21 00:00:00

  • Simultaneous stability and sensitivity in model cortical networks is achieved through anti-correlations between the in- and out-degree of connectivity.

    abstract::Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that reported quantifiable behavioral responses in response to short spike trains elicited i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00156

    authors: Vasquez JC,Houweling AR,Tiesinga P

    更新日期:2013-11-07 00:00:00

  • Letting the daylight in: Reviewing the reviewers and other ways to maximize transparency in science.

    abstract::With the emergence of online publishing, opportunities to maximize transparency of scientific research have grown considerably. However, these possibilities are still only marginally used. We argue for the implementation of (1) peer-reviewed peer review, (2) transparent editorial hierarchies, and (3) online data publi...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00020

    authors: Wicherts JM,Kievit RA,Bakker M,Borsboom D

    更新日期:2012-04-03 00:00:00

  • Deep networks for motor control functions.

    abstract::The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00032

    authors: Berniker M,Kording KP

    更新日期:2015-03-19 00:00:00

  • Statistical physics of pairwise probability models.

    abstract::Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data: knowledge of the mean values and correlations betw...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.10.022.2009

    authors: Roudi Y,Aurell E,Hertz JA

    更新日期:2009-11-17 00:00:00

  • Stochastic Resonance Based Visual Perception Using Spiking Neural Networks.

    abstract::Our aim is to propose an efficient algorithm for enhancing the contrast of dark images based on the principle of stochastic resonance in a global feedback spiking network of integrate-and-fire neurons. By linear approximation and direct simulation, we disclose the dependence of the peak signal-to-noise ratio on the sp...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00024

    authors: Fu Y,Kang Y,Chen G

    更新日期:2020-05-15 00:00:00

  • A single theoretical framework for circular features processing in humans: orientation and direction of motion compared.

    abstract::Common computational principles underlie processing of various visual features in the cortex. They are considered to create similar patterns of contextual modulations in behavioral studies for different features as orientation and direction of motion. Here, I studied the possibility that a single theoretical framework...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00028

    authors: Tzvetanov T

    更新日期:2012-05-22 00:00:00

  • A simple transfer function for nonlinear dendritic integration.

    abstract::Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration ("dendritic integration"). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00098

    authors: Singh MF,Zald DH

    更新日期:2015-08-10 00:00:00

  • Emergence of Relaxation Oscillations in Neurons Interacting With Non-stationary Ambient GABA.

    abstract::Dynamics of a homogeneous neural population interacting with active extracellular medium were considered. The corresponding mathematical model was tuned specifically to describe the behavior of interneurons with tonic GABA conductance under the action of non-stationary ambient GABA. The feedback provided by the GABA m...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00019

    authors: Adamchik DA,Matrosov VV,Kazantsev VB

    更新日期:2018-04-05 00:00:00

  • Learning view invariant recognition with partially occluded objects.

    abstract::This paper investigates how a neural network model of the ventral visual pathway, VisNet, can form separate view invariant representations of a number of objects seen rotating together. In particular, in the current work one of the rotating objects is always partially occluded by the other objects present during train...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00048

    authors: Tromans JM,Higgins I,Stringer SM

    更新日期:2012-07-25 00:00:00

  • Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity.

    abstract::Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00044

    authors: Zeitler M,Tass PA

    更新日期:2016-05-17 00:00:00

  • Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements.

    abstract::Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the informa...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00112

    authors: Kapucu FE,Välkki I,Mikkonen JE,Leone C,Lenk K,Tanskanen JM,Hyttinen JA

    更新日期:2016-10-18 00:00:00

  • Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis.

    abstract::Recently, biologically inspired models are gradually proposed to solve the problem in text analysis. Convolutional neural networks (CNN) are hierarchical artificial neural networks, which include a various of multilayer perceptrons. According to biological research, CNN can be improved by bringing in the attention mod...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00064

    authors: Fu H,Niu Z,Zhang C,Ma J,Chen J

    更新日期:2016-07-14 00:00:00

  • Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release.

    abstract::Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00116

    authors: Bird AD,Wall MJ,Richardson MJ

    更新日期:2016-11-25 00:00:00

  • Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex.

    abstract::A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such mode...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00005

    authors: Thwaites A,Nimmo-Smith I,Fonteneau E,Patterson RD,Buttery P,Marslen-Wilson WD

    更新日期:2015-02-10 00:00:00

  • Probabilistic Circuits for Autonomous Learning: A Simulation Study.

    abstract::Modern machine learning is based on powerful algorithms running on digital computing platforms and there is great interest in accelerating the learning process and making it more energy efficient. In this paper we present a fully autonomous probabilistic circuit for fast and efficient learning that makes no use of dig...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.00014

    authors: Kaiser J,Faria R,Camsari KY,Datta S

    更新日期:2020-02-25 00:00:00

  • Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.

    abstract::A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00141

    authors: Potjans W,Morrison A,Diesmann M

    更新日期:2010-11-23 00:00:00

  • Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy.

    abstract::In temporal lobe epilepsy (TLE), the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal d...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00061

    authors: Zhang L,Fan D,Wang Q

    更新日期:2017-07-11 00:00:00

  • Learning Generative State Space Models for Active Inference.

    abstract::In this paper we investigate the active inference framework as a means to enable autonomous behavior in artificial agents. Active inference is a theoretical framework underpinning the way organisms act and observe in the real world. In active inference, agents act in order to minimize their so called free energy, or p...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2020.574372

    authors: Çatal O,Wauthier S,De Boom C,Verbelen T,Dhoedt B

    更新日期:2020-11-16 00:00:00