SCI SCIE
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 期刊简介
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY
英文简介:

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.

The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

中文简介:(来自Google、百度翻译)

在过去的几十年中,对涉及复杂几何形状,图案和缩放比例的现象的研究经历了惊人的发展和应用。在相对较短的时间内,几何和/或时间缩放已显示出许多过程的共同方面,这些过程发生在异常不同的领域,包括物理,数学,生物学,化学,经济学,工程技术和人类行为。通常,现象的复杂性质表现在潜在的复杂几何形状中,在大多数情况下,可以用非整数 (分形) 维数的对象来描述。在其他情况下,事件在时间或各种其他量中的分布显示出特定的缩放行为,从而更好地理解确定给定过程的相关因素。
在相关的理论,数值和实验研究中使用分形几何和缩放作为一种语言,可以更深入地了解以前难以解决的问题。其中,通过应用诸如尺度不变性等概念,对增长现象,湍流,迭代函数,胶体聚集,生物模式形成,股票市场和非均质材料有了更好的理解,自我亲和和多分形。
专门研究上述现象的期刊的主要挑战在于其跨学科性质; 我们致力于汇集这些领域的最新发展,以便就自然和社会中复杂的时空行为进行各种方法和科学观点的富有成果的互动。

期刊ISSN
0218-348X
影响指数
3.628
最新CiteScore值
6.30 查看CiteScore评价数据
最新自引率
21.40%
期刊官方网址
http://www.worldscientific.com/worldscinet/fractals
期刊投稿网址
http://www.editorialmanager.com/fractals/login.asp
通讯地址
WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224
偏重的研究方向(学科)
数学-数学跨学科应用
出版周期
Quarterly
出版年份
1993
出版国家/地区
SINGAPORE
是否OA
No
SCI期刊coverage
Science Citation Index Expanded(科学引文索引扩展)
NCBI查询
PubMed Central (PMC)链接 全文检索(pubmed central)
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 期刊中科院JCR 评价数据
最新中科院JCR分区
大类(学科)
小类(学科)
综述期刊
数学
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS(数学跨学科应用)2区 MULTIDISCIPLINARY SCIENCES(综合性期刊)2区
最新的影响因子
3.628
最新公布的期刊年发文量
年度总发文量 研究类文章占比
197 100.00%
总被引频次 36
影响因子趋势图
近年的影响因子趋势图(整体平稳趋势)
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 期刊CiteScore评价数据
最新CiteScore值
6.30
年文章数 197
SJR
0.654
SNIP
1.224
CiteScore排名
序号 类别(学科) 排名 百分位
1 Mathematics Geometry and Topology #2/94
2 Mathematics Applied Mathematics #30/548
3 Mathematics Modeling and Simulation #27/290
CiteScore趋势图
CiteScore趋势图
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 相关期刊推荐
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 投稿经验(由下方点评分析获得,10人参与,1153人阅读)
投稿录用比例: 容易
审稿速度: >12周,或约稿
分享者 点评内容
没有更多了~
Copyright © 2014-2019 晟斯医学 All Rights Reserved. 备案号:苏ICP备11037034号-5 版权所有:南京孜文信息咨询有限公司