SCI SCIE
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 期刊简介
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY
英文简介:

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, technology and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes. Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality. The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

中文简介:(来自Google、百度翻译)

在过去的几十年里,涉及复杂几何、模式和尺度的现象研究经历了惊人的发展。在这相对较短的时间内,几何和/或时间尺度已经被证明代表了在物理、数学、生物学、化学、经济学、技术和人类行为等不同寻常的领域中发生的许多过程的共同方面。通常,一个现象的复杂性表现在其底层复杂的几何结构中,在大多数情况下可以用具有非整数(分形)维数的对象来描述。在其他情况下,事件在时间上的分布或各种其他数量的分布显示特定的缩放行为,从而更好地理解决定给定流程的相关因素。在相关的理论、数值和实验研究中,将分形几何和尺度作为一种语言,使我们能够更深入地了解以前难以解决的问题。其中,通过应用尺度不变性、自亲和性和多分形性等概念,对增长现象、湍流、迭代函数、胶体聚集、生物模式形成、股票市场和非均匀材料有了更好的理解。专门研究上述现象的期刊的主要挑战在于其跨学科的性质;我们致力于汇集这些领域的最新发展,以便就自然界和社会中复杂的时空行为采取各种方法和科学观点进行富有成效的相互作用。

想要发表SCI,往往要大量阅读文献,如何提高SCI阅读效率,做到日读30+文献呢?

我为大家推荐一款高效的SCI阅读工具——鲸译SCI阅读器 https://www.jingyiwenxian.com/index#

①智能翻译媲美人工

②文献管理高效便捷

③云端阅读方便安全

④文档编辑功能强大

期刊ISSN
0218-348X
影响指数
4.309 查看JCR评价数据
最新CiteScore值
查看CiteScore评价数据
最新自引率
44.40%
期刊官方网址
http://www.worldscientific.com/worldscinet/fractals
文献阅读官方网址
https://www.jingyiwenxian.com/index
期刊投稿网址
http://www.editorialmanager.com/fractals/login.asp
通讯地址
WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224
偏重的研究方向(学科)
数学-数学跨学科应用
出版周期
Quarterly
出版年份
1993
出版国家/地区
SINGAPORE
是否OA
No
SCI期刊coverage
Science Citation Index Expanded(科学引文索引扩展)
NCBI查询
PubMed Central (PMC)链接 全文检索(pubmed central)
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 期刊中科院JCR 评价数据
最新中科院JCR分区
大类(学科)
小类(学科)
JCR学科排名
综合性期刊
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS(数学,跨学科应用) 3区 MULTIDISCIPLINARY SCIENCES(跨学科科学) 3区
39/103 26/64
最新的影响因子
4.536 查看高效阅读SCI的方法
最新公布的期刊年发文量
年度总发文量 年度论文发表量 年度综述发表量
80 78 2
总被引频次 1429
特征因子 0.001120
影响因子趋势图
2007年以来影响因子趋势图(整体平稳趋势)
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 期刊CiteScore评价数据
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 相关期刊推荐
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 投稿经验(由下方点评分析获得,0人参与,1121人阅读)
偏重的研究方向:
  • 暂无
投稿录用比例: 暂无
审稿速度: 暂无
分享者 点评内容
没有更多了~

旗下网站

晟斯医学- 临床医生学术科研发展平台 2014-2019 晟斯医学版权所有
Copyright © 2014-2019 晟斯医学 All Rights Reserved. 备案号:苏ICP备11037034号-5 版权所有:南京孜文信息咨询有限公司