FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 期刊简介
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
在过去的几十年中,对涉及复杂几何形状,图案和缩放比例的现象的研究经历了惊人的发展和应用。在相对较短的时间内,几何和/或时间缩放已显示出许多过程的共同方面,这些过程发生在异常不同的领域,包括物理,数学,生物学,化学,经济学,工程技术和人类行为。通常,现象的复杂性质表现在潜在的复杂几何形状中,在大多数情况下,可以用非整数 (分形) 维数的对象来描述。在其他情况下,事件在时间或各种其他量中的分布显示出特定的缩放行为,从而更好地理解确定给定过程的相关因素。
在相关的理论,数值和实验研究中使用分形几何和缩放作为一种语言,可以更深入地了解以前难以解决的问题。其中,通过应用诸如尺度不变性等概念,对增长现象,湍流,迭代函数,胶体聚集,生物模式形成,股票市场和非均质材料有了更好的理解,自我亲和和多分形。
专门研究上述现象的期刊的主要挑战在于其跨学科性质; 我们致力于汇集这些领域的最新发展,以便就自然和社会中复杂的时空行为进行各种方法和科学观点的富有成果的互动。
期刊ISSN
|
0218-348X |
影响指数
|
3.628 |
最新CiteScore值
|
6.30 查看CiteScore评价数据 |
最新自引率
|
21.40% |
官方指定润色网址
|
https://www.deeredit.com/?type=ss1 |
投稿语言要求
|
Improve the quality of the paper, eliminate grammar and spelling errors, increase readability, ensure accurate communication of viewpoints, enhance academic reputation, and increase the chances of the paper being accepted. 建议点击这个网址:https://www.deeredit.com/?type=ss2,资深审稿专家为您评估稿件质量,提供针对性改进建议,最终可助您极大提升目标期刊录用率 |
期刊官方网址
hot |
https://www.peipusci.com/?type=9 |
杂志社征稿网址
hot |
https://www.peipusci.com/?type=10 |
通讯地址
|
WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224 |
偏重的研究方向(学科)
|
数学-数学跨学科应用 |
出版周期
|
Quarterly |
出版年份
|
1993 |
出版国家/地区
|
SINGAPORE |
是否OA
|
No |
SCI期刊coverage
|
Science Citation Index Expanded(科学引文索引扩展) |
NCBI查询
|
PubMed Central (PMC)链接 全文检索(pubmed central) |
最新中科院JCR分区
|
大类(学科)
小类(学科)
综述期刊
数学
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS(数学跨学科应用)2区
MULTIDISCIPLINARY SCIENCES(综合性期刊)2区
否
|
|||||
最新的影响因子
|
3.628 | |||||
最新公布的期刊年发文量 |
|
|||||
总被引频次 | 36 | |||||
影响因子趋势图 |
近年的影响因子趋势图(整体平稳趋势)
|
2022年预警名单预测最新
最新CiteScore值
|
6.30
|
||||||||||||||||||
年文章数 | 197 | ||||||||||||||||||
SJR
|
0.654 | ||||||||||||||||||
SNIP
|
1.224 | ||||||||||||||||||
CiteScore排名
|
|
||||||||||||||||||
CiteScore趋势图 |
CiteScore趋势图
|
本刊同领域相关期刊
|
|
期刊名称 | IF值 |
R&D MAGAZINE | 0.103 |
COMPLEXITY | 2.805 |
Mathematical Modelling of Natural Phenomena | 4.115 |
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2.808 |
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY | 3.628 |
PeerJ | 2.954 |
PLoS One | 3.208 |
Frontiers in Life Science | 1.98 |
ENDEAVOUR | 0.44 |
本刊同分区等级的相关期刊
|
|
期刊名称 | IF值 |
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY | 3.628 |
NATURE | 49.462 |
SCIENCE | 47.251 |
Science Bulletin | 11.662 |
Nature Communications | 14.77 |
National Science Review | 17.102 |
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA | 11.093 |
Science Advances | 13.995 |
分享者 | 点评内容 |