如何正确选择医学统计方法?

2019.05.28 14:57
126 0 0

  医学统计方法有很多,例如样本均数与已知样本均数比较、两样本均数比较、多个样本均数的比较、两个样本率的比较、多个样本率的比较、两组或多组构成比的比较、非参数检验、多因素资料的方差分析等。但大家知道如何选择合适的医学统计方法吗?跟小编一起来复习一下吧。

  统计学的基本概念

  1、小概率事件

  如果事先假定发生概率最多为0.05的事件为小概率事件,那么根据小概率事件原理,即“小概率事件在一次随机试验中几乎不可能发生”。假设检验就是根据小概率事件原理对该假设进行推断。

  2、非参数统计

  统计学上,对总体的分布不做假设或仅作非常一般性假设条件下的统计推断方法称为“非参数统计”。非参数统计方法很多,应用较多的包括

  配对设计资料的Wilcoxon符号秩和检验、单样本的Wilcoxon符号秩和检验、完全随机设计两独立样本的Wilcoxon符号秩和检验、完全随机设计多个独立样本的Kruskal-Wallis秩和检验和随机化区组设计资料的Friedman秩和检验。

  3、实验研究三要素

  实验研究三要素包括:处理因素、实验对象、实验效应。处理因素有单因素、多因素;实验对象的设计方式有完全随机、配对或随机区组;实验效应通过观察指标来表达,而观察指标又可分为计量、计数或等级资料。这三者的不同组合决定了选用不同的统计方法。

  单变量统计方法选择的一般原则

  影响因素是单因素还是多因素

  判断拟分析的资料属于哪种类型:计量、计数还是等级资料

  资料是单一样本、两组样本还是多组样本

  判断资料所属的设计方式,是完全随机、配对还是随机区组

  判断资料是否符合拟采用的统计分析方法的应用条件,必要时可考虑变量变换

  多变量统计方法的选择

  在医学研究中,特别是在临床研究中,每个观察对象记录的观察指标往往不止1个,即有多个反应变量。分析变量间的相互关系是探索疾病病因的重要途径,多参数统计方法常用于这类研究问题的分析。


  在医学科研中,常用的多参数统计方法有3种:多元线性回归、Logistic回归分析和生存分析。


  1、多元线性回归要求应变量是连续型变量,但是在医学研究中经常遇到的应变量为非连续的分类变量,如某种疾病的患病与否,器官移植之后是生存还是死亡。

  2、研究分类应变量与诸多自变量间的相互关系,进行疾病的病因分析常选用Logistic回归分析。

  3、在医学随访研究中,不仅要看是否出现了某种结局(如器官移植后是否死亡),还要考虑出现这些结局所经历的时间长短。生存分析就是将观察结局和出现这一结局所经历的时间结合起来分析的一种统计分析方法。


  以上涉及的一些是医学工作者在开展医学临床研究中常用的、基本的统计方法,而在已经发表的临床医学研究论文中滥用统计学方法的现象更是屡见不鲜,严重地削弱了这些研究论文结论的可靠性。严谨的科研设计与科学的统计学处理是开展高质量检验医学临床研究的基础。只有注重试验设计的每一个细节,根据分析目的正确地运用统计学方法对数据进行分析,并合理解释统计学结论,研究结果才具有较高的论证强度,才会引起同行特别是循证医学工作者的注意,并最终实现科学研究成果向临床应用的转化。

  相关阅读推荐:

  免疫算法与遗传算法比较

  缺失数据插补的五种常见方法


标签: 医学统计方法
投诉文章 ©著作权归作者所有
喜欢  |  0
0/200字
没有更多评论了~
悬赏问题
给科研问题设置一定金额,将更容易获得关注与回答哦~
  • 1元
  • 3元
  • 5元
  • 8元
  • 18元
  • 自定义
选择支付方式
  • 微信支付
  • 支付宝支付
  • 余额支付

旗下网站

晟斯医学- 临床医生学术科研发展平台 2014-2019 晟斯医学版权所有 <!–百度推送–> <!–360推送–>
Copyright © 2014-2019 晟斯医学 All Rights Reserved. 备案号:苏ICP备11037034号-5 版权所有:南京孜文信息咨询有限公司