科研论文中数据的分析方法

2018.11.28 17:46
503 0 0

       一、差异分析/数据资料的比较,是同一指标在不同处理间的比较,临床研究中,经常需要分析某些因素与疾病之间的关系,探讨疾病的危险因素。注意,相关关系并不等于因果关系。

常用多变量分析方法.png

1.常用数值资料的关系分析方法

常用数值分析方法.png

2.无序分类变量(计数资料)的相关分析

前瞻性研究:相对危险度(RR)、归因危险度(AR)
回顾性研究:比值比(OR)

3.有序分类变量(等级资料)等级相关分析

参数检验:积矩相关系数(Pearson's sγ)
非参数检验:Spearman等级相关系数


二、诊断性试验的研究与评价

1.方法与评价条件

1)确定金标准
诊断性试验的金标准(gold standard)是指当前临床医师公认的诊断疾病最可靠的方法,也称为标准诊断。应用金标准可以正确区分“有病”和“无病”。

拟评价的诊断性试验对疾病的诊断,必须有金标准为依据,所谓金标准包括活检、手术发现、细菌培养、尸检、特殊检查和影像诊断,以及长期随访的结果。

2)选择研究对象
诊断性试验的研究对象,应当包括两组:一组是用金标准确诊“有病”的病例组,另一组是用金标准证实为“无病”的患者,称为对照组。所谓“无病”的患者,是指没有金标准诊断的目标疾病,而不是完全无病的正常人。

病例组应包括各型病例:如典型和不典型的,早、中与晚期病例,轻、中与重型的,有和无并发症者等,以便使诊断性试验的结果更具有临床实用价值。

对照组可选用金标准证实没有目标疾病的其他病例,特别是与该病容易混淆的病例,以期明确其鉴别诊断价值。正常人一般不宜纳入对照组。

3)盲法比较诊断性试验与金标准的结果
评价诊断性试验时,采用盲法具有十分重要的意义,即要求判断试验结果的人,不能预先知道该病例用金标准划分为“有病”还是“无病”,以免发生疑诊偏倚。

新的诊断性试验,对疾病的诊断结果应当与金标准诊断的结果进行同步对比,并且列出格表,以便进一步评估,其方法如下:
①用金标准诊断为“有病”的病例数为a+c;
②上述“有病”的病例经诊断性试验检测,结果阳性者为a,阴性者为c;
③金标准诊断“无病”的倒数为b+d,其中经诊断性试验检测阳性者为b,阴性者为d;
④列出四格表,将a,b,c,d的倒数分别填入下列四格表。

四格表排列.png

敏感度(sensitivity, SN)是正确诊断的真阳性病例在中风组中所占的百分率,计算公式为为:SN=a/(a+c)×100%

特异度(specificity, SP)是正确诊断的真阴性部分所占百分率,计算公式为:SP=d/(b+d)×100%

准确性(accuracy,AC)反映了诊断试验结果与金标准试验结果的符合或一致程度,计算公式为:AC = (a+d)/N

阳性预测值(positive predictive value,PPV)是诊断试验为阳性结果中金标准证实患中风者所占的百分率,计算公式为: PPV = a/(a+b)×100%

阴性预测值(negative predictive value,NPV)是诊断试验为阴性结果中金标准证实未患中风者所占的百分率,计算公式为:NPV = d/(c+d)×100% .

阳性似然比(positive likelihood ratio, LR+)为患中风组真阳性率和未患中风组假阳性率的比值,计算公式为:LR+ =SN/(1-SP) ,表明诊断性试验为阳性时患病于不患病的比值,比值越大则患病的概率越大.

阴性似然比(negative likelihood ratio, LR-)为患中风组假阴性率与未患中风真阴性率的比值,计算公式为:LR- =(1-SN)/SP,表明诊断试验为阴性时,患病与不患病时机会的比值.



标签: 科研数据
投诉文章 ©著作权归作者所有
喜欢  |  0
0/200字
没有更多评论了~
悬赏问题
给科研问题设置一定金额,将更容易获得关注与回答哦~
  • 1元
  • 3元
  • 5元
  • 8元
  • 18元
  • 自定义
选择支付方式
  • 微信支付
  • 支付宝支付
  • 余额支付

旗下网站

晟斯医学- 临床医生学术科研发展平台 2014-2019 晟斯医学版权所有
Copyright © 2014-2019 晟斯医学 All Rights Reserved. 备案号:苏ICP备11037034号-5 版权所有:南京孜文信息咨询有限公司